
6 Chapter 1

Enter y if prompted. After successful installation, conda list should display the
packages installed in the base environment, including spyder-kernels. Finally,
enter the command

which python

Copy or record the returned path.
In Spyder, open preferences with Ctrl + , . Navigate to the tab Python Interpreter

and check Use the following Python interpreter . Either paste the path copied above in the
text field or click the Select file button, then navigate to the path in question, selecting
the python program. Click OK to complete the configuration.
You may need to restart Spyder for the changes to take effect.

1.3 Basic Elements of a Program LINK
C0

Every programming language has a syntax: rules that describe the
structure of valid combinations of characters and words in a program.
When one first begins writing in a programming language, it is common to generate
syntax errors, improper combinations of characters andwords. Every programming
language also has a semantics: a meaning associated with a syntactically valid
program. A program’s semantics describe what a program does.
In Python and in other programming languages, programs are composed of a

sequence of smaller elements called statements. Statements do something, like per-
form a calculation or store a value in memory. For instance, x = 3*5 is a statement
that computes a product and stores the result under the variable name x. Many
statements contain expressions, each of which produces a value. For instance, 3*5
in the previous statement is an expression that produces the value 15.
An expression contains smaller elements called operands and operators. Com-

mon operands include identifiers—names like variables, functions, and modules
that refer to objects—and literals—notations for constant values of a built-in type.
For instance, in the previous expression x is a variable identifier and 3 and 5 are
literals that evaluate to objects of the built-in integer class. The * character in
the previous expression is the multiplication operator. Python includes operators
for arithmetic (e.g., +), assignment (e.g., =), comparison (e.g., >), logic (e.g., or),
identification (e.g., is), membership (e.g., in), and other operations.

Example 1.1

Create a Python program that computes the following arithmetic expressions:

G = 4069 · 0.002, H = 100/1.5, and I = (−3)2 + 15− 3.01 · 10.

Multiply these together (GHI) and print the product, along with G, H, and I to
the console.

https://engineering-computing.ricopic.one/c0
https://engineering-computing.ricopic.one/c0

Introduction 7

Consider the following program:

x = 4096*0.002 # float multiplication
y = 100/1.5 # float division
z = (-3)**2 + 15 - 3.01*10 # exponent operator **
print(x,y,z)
print(x*y*z)

The console should print

8.192 66.66666666666667 -6.099999999999998
-3331.413333333333

Note that althoughwehavemultiplied anddivided integer literals (4096 and 100)
by floating-point literals (0.002 and 1.5), Python has automatically assumed
we would like floating-point multiplication and division.
We used the exponent operator **, which may have been unfamiliar. If you

tried the more common character ^ for the exponent, you received the error

TypeError: unsupported operand type(s) for ^: 'int' and 'float'

In Python, the ^ is the bitwise logical XOR operator.

1.3.1 Classes, Objects, and Methods

Everything that is expressed in a Python statement is an object, and every object is
an instance of a class. For instance, 7 is a literal that evaluates to an object that is an
instance of the integer class. Similarly, "foo" is a literal that evaluates to an object
that is an instance of the string class. A class can be thought of as a definition of
the kind of objects that belong to it, how they are structured, and the kinds of things
that can be done with it.
Python includes built-in classes such as the numeric integer, floating-point

number, and complex number. It is common to refer to a class, especially a built-in
class, as a type.
Classes are more than types of data, however. Classes can include one or more

method, which is a kind of function that operates on inputs called arguments

and returns outputs. Something special about methods is that they can operate on
instances of the class. For example,

3.5.as_integer_ratio()

The literal 3.5 yields an instance of the float class, which has method
as_integer_ratio(). Placing the . character before themethod name is the syntax
to apply the object’s as_integer_ratio()method. This method returns a tuple
object with the form (<numerator>, <denominator>), where <numerator> and

8 Chapter 1

<denominator> denote the numerator and denominator of the integer ratio
corresponding to the floating-point number. The expression yields the output

(7, 2)

which signifies the fraction 7/2.
We can and often do create our own classes with their own methods. We will

return to this topic in a later chapter.

Example 1.2

Create a Python program that starts with the three word strings "veni", "vedi",
"vici" and concatenates and prints them with the following caveats:

• Between each word string, insert a comma and a space.
• Capitalize each word string using the capitalize()method.

Consider the following program:

w1 = "veni"
w2 = "vedi"
w3 = "vici"
print(w1.capitalize() + ", " +

w2.capitalize() + ", " +
w3.capitalize()

)

The console should print

Veni, Vedi, Vici

Note that we have used linebreaks to improve code readability. Python syntax
allows expressions enclosed in parentheses to be broken after operators.

1.3.2 Basic Built-In Types

Python has several built-in types (classes) that provide a foundation from which
many of our programs can be written. We have seen some examples of these types
already, and in this section they will be described in greater detail.

1.3.2.1 Boolean The simple bool (i.e., Boolean) type can have one of two values,
True or False. This type is used extensively for logical reasoning in programs, and
will be especially important for branching (see section 1.8). Expressions containing
the Boolean operators not, and, and or evaluate to Boolean values. For instance,

Introduction 9

not True # => False
not False # => True
True and False # => False
True or False # => True

Similarly, expressions with the comparison operators == (equality), != (inequal-
ity), < (less than), > (greater than), <= (less than or equal), >= (greater than or equal),
is (identity), is not (nonidentity), and in (membership). evaluate to Boolean val-
ues. A truth table for the Boolean operators and some comparison operators is
given in table 1.1.

Table 1.1. Boolean and comparison operators on Boolean and integer inputs x and y

x y bool(x) not x x and y x or y x==y x!=y x<y x<=y x>=y x>y

False False False True False False True False False True True False
False True False True False True False True True True False False
True False True False False True False True False False True True
True True True False True True True False False True True False
0 0 False True 0 0 True False False True True False
0 1 False True 0 1 False True True True False False
1 0 True False 0 1 False True False False True True
1 1 True False 1 1 True False False True True False

Note that non-Boolean inputs can be given to the Boolean operators. Non-Boolean
objects can be given Boolean values with the bool() function, included in the table.
For instance, bool(0) and bool(0.0) evaluate to False; conversely, bool(1) and
bool(1.0) evaluate to True. In fact, for all numeric types (i.e., int, float, and
complex), every value evaluates to True except those equivalent to 0.

1.3.2.2 Integer The int (i.e., integer) type can be used to represent the mathemat-
ical integers, positive and negative (and 0). As we have already seen, several built-in
operators can be applied to integer inputs, including + (summation), - (difference),
* (product), and / (quotient). More operators will be introduced in later chapters.
The built-in int() function returns an integer representation of its input, which

can be either a number, a string, or empty, in which case int() returns 0. Although
it does not round in the most elegant manner, int() can be used to convert a
floating-point number to an integer, as in

int(3.2) # => 3
int(3.9) # => 3
int(-3.9) # => -3

We see that int() rounds toward zero.

10 Chapter 1

1.3.2.3 Floating-Point Number Like scientific notation, floating-point numbers

represent potentially very large or very small numbers in a compact form. This
form has three parts: a sign B, a significand G, and an exponent =. These combine
as

B × G × 2= .

Floating-point numbers can be represented with the Python float type and
are often used to represent decimal numbers, such as 1.4 and −0.33. The built-in
float() function returns a float from a number or string argument. For instance,

float(5) # => 5.0
float("5") # => 5.0

Floating-point numbers can be entered with scientific notation via the letter e, as
in the following examples:

291e-6 # => 0.000291
1e3 # => 1000.0

1.3.2.4 Complex Number Complex numbers, which have a real part 0 and
imaginary part 1, represented mathematically as

0 + 91,
where 9 is the imaginary number

√
−1, can be represented in Python with the

complex type. For numbers a and b, we can construct a complex type with
complex(a, b). For instance,
complex(1, 2) # => (1+2j)

A complex object has attributes real and imag that return the real and imaginary
parts, respectively. For instance,

s = complex(3, -5)
s.real # => 3
s.imag # => -5

1.3.2.5 String Strings are series of characters and have built-in Python type str.
String literals can be written with either single quotes (e.g., 'foo') or double
quotes (e.g., "bar"). Within one variety, the other is treated as a regular quote,
as in "A 'friend' wants to know" and 'I am "big boned"'. It is generally
recommeneded to use just one variety or the other for string literals in a given
project (mixing the two is seen as bad form).
The str() function returns a string representation of the object it is given as

input. For instance, str(4) returns "4" and str(True) returns "True". This is
especially helpful when joining strings as in the following example:

Introduction 11

x = 3.14159
print("x = " + str(x) + " m")

A convenient way to construct nice strings is the formatted string (f-string)

literals. A simple f-string that has the same value as what is printed in the example
above is f"x = {x} m". Executable expressions are inserted in braces {} within
the f-string. Note that the str() function is automatically called, which makes for
a nicer syntax.
A format specifier can also be applied to expressions in an f-string. These have

the general form

:[[fill]align][sign][z][#][0][width][group][.prec][type]

Each of these terms is described in table 1.2 and table 1.3. In the example above, we
could format the printing of x in fixed-point format (f) with a precision (.prec) of
3 decimal places with

print(f"x = {x:.3f} m") # => x = 3.142

In the following example, we use scientific notation (e) with precision (.prec) of 4:

x = 0.00123
print(f"x = {x:.4e} m") # => x = 1.2300e-03 m

Note that the number of significant digits is 1 greater than the precision in this
format. In the following example, we use binary (b) with 0-padding:

x = 3
print(f"x = {x:04b} (in binary)") # => x = 0011 (in binary)

Table 1.2. Format specifier terms.

Term Values (if any) Default Effect

: Separates the format specifier from the
expression

fill Any character space Character to pad with when value doesn’t
use the entire field width

align < (left) | > (right) | ^ (center)
| =

< How to justify when value doesn’t occupy
the entire field width

sign + (explicit +) | - (no plus) |
space (space but no plus)

- How a sign appears for numeric values

z z Coerces -0.0 to 0.0
Use the alternate output form for numeric

values
0 0 Pad on the left with zeros instead of

spaces
width Positive integers Minimum width of (number of characters

in) the field
group , | _ Grouping character (thousands separator)

for numeric output

12 Chapter 1

Term Values (if any) Default Effect

.prec Nonnegative integers varies with type Digits after the decimal point for
floating-points, maximum width for
strings

type See table 1.3 s (strings) or d
(numbers)

Specifies the presentation type, which is
the type of conversion performed on the
corresponding argument

Table 1.3. Format specifier types.

Input Class Format Type Meaning

String s String
String None String (same as s)
Integer b Binary
Integer c Character
Integer d Decimal integer
Integer o Octal
Integer x or X Hex (lowercase or uppercase)
Integer n Local decimal number (similar to d)
Integer None Same as d
Floating-point e or E Scientific notation (lowercase or uppercase)
Floating-point f or F Fixed-point notation (lowercase or uppercase)
Floating-point g or G General format (lowercase or uppercase)
Floating-point n Local general format
Floating-point % Percentage
Floating-point None Same as g

The str class has several methods. We have already seen the capitalize()
method applied in section 2.3.2. Table 1.4 describes several frequently used string
methods.

Table 1.4. Some particularly useful string methods.

Method Description

capitalize() Convert the first character to uppercase
count() Return the count of the specified value occurrences
endswith() If the string ends with the specified value, return True
find() Return the position where the specified value is found
index() Return the position where the specified value is found
isalpha() If all characters are alphabetic, return True
isdecimal() If all characters are decimals, return True
isdigit() If all characters are digits, return True
isnumeric() If all characters are numeric, return True
join() Convert iterable elements into a single string
lower() Convert the string to lowercase
replace() Return a string with the specified value replaced
rindex() Return the last position where the specified value is found
rsplit() Split at the specified separator, return a list
split() Split at the specified separator, return a list
splitlines() Split at line breaks, return a list

Introduction 13

Method Description

startswith() If the string starts with the specified value, return True
strip() Return a trimmed version of the string

1.3.3 Iterable Objects and Dictionaries

In Python, an iterable object is one that contains a collection of elements and
defines, for each element, which element is next. In the following sections, we will
consider some built-in iterable classes (types).

Box 1.1 Further Reading

• Python Community (2024a; § The Python Tutorial: 9 Classes), on classes,
objects, and methods
• Python Community (2024a; § Python Standard Library: Built-in Types), on the
basic built-in types

1.4 Lists LINK
KX

The list class defines an ordered set of elements. These elements can
be of any class, and do not need to match within a list. Lists can be
nested to create a list of lists. The basic syntax for creating a list of elements eG is
[e1, e2, ..., en]. Consider the following list assignments:

int_list = [3, 9, 3, -4, 0] # Duplication allowed
str_list = ["foo", "bar", "baz"]
com_list = [int_list, str_list] # List of lists
mix_list = [8.41, "foo", [7]] # Mixing element types

1.4.1 Accessing List Elements

Because the elements of a list have an order, they can be referred to via an index, a
mapping of integers to elements. In Python, the first element in the list has index
0 and subsequent elements have indices of increasing values, 1, 2, 3, and so on.
The syntax for accessing the element with index i of a list l is l[i]. For instance,
elements from the previously defined lists can be accessed as follows:

int_list[0] # => 3
int_list[3] # => -4
str_list[2] # => "baz"
mix_list[2] # => [7]

Negative indices are used to access elements from the end of a list. For instance,
for int_list above,

https://engineering-computing.ricopic.one/kx
https://engineering-computing.ricopic.one/kx

