
Introduction 13

Method Description

startswith() If the string starts with the specified value, return True
strip() Return a trimmed version of the string

1.3.3 Iterable Objects and Dictionaries

In Python, an iterable object is one that contains a collection of elements and
defines, for each element, which element is next. In the following sections, we will
consider some built-in iterable classes (types).

Box 1.1 Further Reading

• Python Community (2024a; § The Python Tutorial: 9 Classes), on classes,
objects, and methods
• Python Community (2024a; § Python Standard Library: Built-in Types), on the
basic built-in types

1.4 Lists LINK
KX

The list class defines an ordered set of elements. These elements can
be of any class, and do not need to match within a list. Lists can be
nested to create a list of lists. The basic syntax for creating a list of elements eG is
[e1, e2, ..., en]. Consider the following list assignments:

int_list = [3, 9, 3, -4, 0] # Duplication allowed
str_list = ["foo", "bar", "baz"]
com_list = [int_list, str_list] # List of lists
mix_list = [8.41, "foo", [7]] # Mixing element types

1.4.1 Accessing List Elements

Because the elements of a list have an order, they can be referred to via an index, a
mapping of integers to elements. In Python, the first element in the list has index
0 and subsequent elements have indices of increasing values, 1, 2, 3, and so on.
The syntax for accessing the element with index i of a list l is l[i]. For instance,
elements from the previously defined lists can be accessed as follows:

int_list[0] # => 3
int_list[3] # => -4
str_list[2] # => "baz"
mix_list[2] # => [7]

Negative indices are used to access elements from the end of a list. For instance,
for int_list above,

https://engineering-computing.ricopic.one/kx
https://engineering-computing.ricopic.one/kx


14 Chapter 1

int_list[-1] # => 0
int_list[-2] # => -4

This is particularly useful when we want to access the last element of a list, which
we see has index -1.
A selection of elements from a list can be accessed via slicing, which has the

syntax l[start:stop] or l[start:stop:step]. For instance,

l = [0, 1, 2, 3, 4]
l[0:3] # => [0, 1, 2]
l[2:4] # => [2, 3]
l[0:-1] # => [0, 1, 2, 3] (no last item!)
l[0:] # => [0, 1, 2, 3, 4]
l[0::2] # => [0, 2, 4] (every two elements)

It is important to note that the slice does not include the stop index; rather, the
slice’s last value is from index stop-1. As we see in the third slice example, this
means the normal syntax for slicing through the final element (i.e., the element with
index -1) does not include that element. To include the final element, leave off an
index for stop, as shown in the fourth and fifth examples.

1.4.2 Mutability

Lists aremutable; that is, they can bemutated (changed). This is unlikemost built-in
types, which are immutable and cannot be changed. The mutability for frequently
used built-in types is shown in table 1.5.

Table 1.5. Mutability of commonly used built-in types.

Data Type Built-in Class Mutability

Numbers int, float, complex Immutable
Strings str Immutable
Tuples tuple Immutable
Booleans bool Immutable
Lists list Mutable
Dictionaries dict Mutable
Sets set Mutable

Themutability of lists allows us to change their elements. The syntax for assigning
a new value v to an element with index i of a list l is l[i] = v. For instance,
l = ["Hello", "World", "!"]
l[1] = "Stranger"
print(l)

returns

['Hello', 'Stranger', '!']



Introduction 15

Note that although strings are immutable, a list of strings is mutable. This means
"Stranger" is not at the same location in memory as was "World".

1.4.3 Methods

Lists have several methods for mutating themselves, which are given in table 1.6.

Table 1.6. Commonly used list methods for a list l.

Method Description

l.append(item) Append item to the end of l
l.clear() Remove all items from l
l.extend(iterable) Concatenate l with the contents of iterable
l.index(x[, start[, end]]) Return the index of the first instance of x in l[start:end]
l.insert(index, item) Insert item into l at index
l.pop(index) Return and remove the item at index
l.pop() Return and remove the last item
l.remove(item) Remove item’s first occurrence
l.reverse() Reverse the items of l
l.sort(key=None, reverse=False) Sort the items of l

For example, an element can be inserted into a list as follows:

l = ["zero", "one", "three"]
l.insert(2, "two")
print(l)

which returns

['zero', 'one', 'two', 'three']

When using most list methods, we often do not assign the returned value from
the expression. This is because most of these expressions return a value of None.
For instance, from the previous example,

print(l.insert(2, "two"))

returns

None

Such methods are simply operating on the original list object and do not return that
object. This is a common idiom in Python programming, and many mutable classes
behave similarly.

Example 1.3

Write a program that removes the second occurrence of the element 3 from the
following list:

l = [1, 2, 3, 0, 3, 4, 3]



16 Chapter 1

The remove()method might seem promising, but it only removes the first occur-
rence of the element. Instead, let’s identify the index of the second occurrence.
The index(x[, start[, end]])method allows us to identify the index of the
first occurrence or the first occurrence between start and end. So our strategy
is to find the index i_first of the first occurrence with index(), then narrow
our search to the rest of the list after i_first to the end of the list, identifying
the second index i_second. Finally, we can remove the element at i_second
with the popmethod.
The following program implements this strategy.

l = [1, 2, 3, 0, 3, 4, 3]
x = 3 # element we are removing
i_first = l.index(x) # first occurrence index
i_second = l.index(x, i_first+1) # second occurrence index
l.pop(i_second) # removes second occurrence
print(f"l without second {x}: {l}")

This prints

l without second 3: [1, 2, 3, 0, 4, 3]

1.5 Tuples and Ranges LINK
RQ

Python has a built-in tuple class tuple is very similar to a list in
that it is an ordered collection of elements. The term “tuple” is a
generalization of the terms “single,” “double,” “triple,” “quadruple,” and so on.
The primary difference between a tuple and a list is that a tuple is immutable,
so its elements can’t be changed. The syntax for a tuple literal of elements eG is
(e1, e2, ..., en). The elements can each be of any type, including tuples. For
example, the following statements return tuples:

(0, 1, 2, 4, 5)
("foo", "bar", "baz")
([0, 1], [2, 3])
((0, 1), (2, 3))
(0, "foo", [1, 2], (3, 4))

Elements of a tuple can be accessed via the same syntax as is used for lists,
including slicing. For instance,

t = (0, 1, 2)
t[1] # => 1
t[0:2] # => (0, 1)
t[1:] # => (1, 2)

https://engineering-computing.ricopic.one/rq
https://engineering-computing.ricopic.one/rq

