
16 Chapter 1

The remove()method might seem promising, but it only removes the first occur-
rence of the element. Instead, let’s identify the index of the second occurrence.
The index(x[, start[, end]])method allows us to identify the index of the
first occurrence or the first occurrence between start and end. So our strategy
is to find the index i_first of the first occurrence with index(), then narrow
our search to the rest of the list after i_first to the end of the list, identifying
the second index i_second. Finally, we can remove the element at i_second
with the popmethod.
The following program implements this strategy.

l = [1, 2, 3, 0, 3, 4, 3]
x = 3 # element we are removing
i_first = l.index(x) # first occurrence index
i_second = l.index(x, i_first+1) # second occurrence index
l.pop(i_second) # removes second occurrence
print(f"l without second {x}: {l}")

This prints

l without second 3: [1, 2, 3, 0, 4, 3]

1.5 Tuples and Ranges LINK
RQ

Python has a built-in tuple class tuple is very similar to a list in
that it is an ordered collection of elements. The term “tuple” is a
generalization of the terms “single,” “double,” “triple,” “quadruple,” and so on.
The primary difference between a tuple and a list is that a tuple is immutable,
so its elements can’t be changed. The syntax for a tuple literal of elements eG is
(e1, e2, ..., en). The elements can each be of any type, including tuples. For
example, the following statements return tuples:

(0, 1, 2, 4, 5)
("foo", "bar", "baz")
([0, 1], [2, 3])
((0, 1), (2, 3))
(0, "foo", [1, 2], (3, 4))

Elements of a tuple can be accessed via the same syntax as is used for lists,
including slicing. For instance,

t = (0, 1, 2)
t[1] # => 1
t[0:2] # => (0, 1)
t[1:] # => (1, 2)

https://engineering-computing.ricopic.one/rq
https://engineering-computing.ricopic.one/rq


Introduction 17

Because tuples are immutable, there are only two built-in tuplemethods, count()
and index(). The count()method returns the number of times its argument occurs
in the tuple. For instance,

t = (-7, 0, 7, -7, 0, 0)
t.count(-7) # => 2

The index()method returns the index of the first occurrence of its argument. For
instance,

t = ("foo", "bar", "baz", "foo", "bar", "baz", "baz")
t.index("baz") # => 2

The range built-in type is a compact way or representing sequences of integers.
A range can be constructed with the range(start, stop, step) constructor
function, as in the following examples:

list(range(0, 3, 1)) # => [0, 1, 2]
list(range(2, 6, 1)) # => [2, 3, 4, 5]
list(range(0, 3)) # => [0, 1, 2] (step=1 by default)
list(range(3)) # => [0, 1, 2] (start=0 by default)

Note that we have wrapped the ranges in list() functions, which converted
each range to a list. This was only so we can see the values it represents; alone, an
expression like range(0, 3) returns itself. This is why a range is such a compact
data point—all that needs to be stored in memory are the start, stop, and step
arguments because the intermediate values are implicit.

1.6 Dictionaries LINK
OW

The built-in Python dictionary class dict is an unordered collection
of elements, each of which has a unique key and a value. A key
can be any immutable object, but a string is most common. A value can be any
object. The basic syntax to create a dict object with keys kG and values vG is
{k1: v1, k2: v2, ...}. For instance, we can define a dict as follows:
d = {"foo": 5, "bar": 1, "baz": -3}

Accessing a value requires its key. To access a value in dictionary dwith key k,
use the syntax d[k]. For example,

https://engineering-computing.ricopic.one/ow
https://engineering-computing.ricopic.one/ow

