Introduction 17

Because tuples are immutable, there are only two built-in tuple methods, count ()
and index (). The count () method returns the number of times its argument occurs
in the tuple. For instance,

|t = (_7’ O: 7: _7’ O: O)
|t‘count(—7) #=>2

The index () method returns the index of the first occurrence of its argument. For
instance,

| t - (llfooﬂ’ ||barl|, ||bazll, ||foo|l, llbarll, llbazll, llbaz")

| t.index("baz") # => 2

The range built-in type is a compact way or representing sequences of integers.
A range can be constructed with the range(start, stop, step) constructor
function, as in the following examples:
| 1ist(range(0, 3, 1)) # => [0, 1, 2]
| 1ist(range(2, 6, 1)) # => [2, 3, 4, 5]
| 1list (range(0, 3)) # => [0, 1, 2] (step=1 by default)
|1ist(range(3)) # => [0, 1, 2] (start=0 by default)

Note that we have wrapped the ranges in 1ist () functions, which converted
each range to a list. This was only so we can see the values it represents; alone, an
expression like range (0, 3) returns itself. This is why a range is such a compact
data point—all that needs to be stored in memory are the start, stop, and step
arguments because the intermediate values are implicit.

1.6 Dictionaries

The built-in Python dictionary class dict is an unordered collection
of elements, each of which has a unique key and a value. A key
can be any immutable object, but a string is most common. A value can be any
object. The basic syntax to create a dict object with keys kx and values vx is
{k1: v1, k2: v2, ...} Forinstance, we can define a dict as follows:

|d = {"foo": 5, "bar": 1, "baz": -3}

Accessing a value requires its key. To access a value in dictionary d with key k,
use the syntax d [k]. For example,

https://engineering-computing.ricopic.one/ow
https://engineering-computing.ricopic.one/ow

18 Chapter 1

d = { # It is often useful to break lines at each key-value pair
"name": "Spiff",

"age": 33,
"occupation": "spaceman",
"enemies": ["Zorgs", "Zargs", "Zogs"]

}
print(f"{d['name']l} is a {d['age'l} year old"
f"{d['occupation']} who fights {d['enemies'][0]}.")

This returns
Spiff is a 33 year old spaceman who fights Zorgs.

A value v with key k can be added to an existing dictionary d with the syntax
d[k] = v.For instance, (Filik et al. 2019)
|d = {} # Empty dictionary
| d["irony"] = "The use of a word to mean its opposite."
| d["sarcasm"] = "Irony intended to criticize."

Dictionaries are mutable; therefore, we can change their contents, as in the
following example:

ld={}
| d["age"] = 33 # d is {"age": 33}
|d["age“] = 31 # d is {"age": 31}

Dictionaries have several handy methods; these are listed in table 1.7.

Table 1.7. Dictionary instance methods for dictionary instance d and class method for
class dict.

Methods Descriptions

d.clear() Clears all items from d

d.copy() Returns a shallow copy of d

dict.fromkeys(s[, v])Returnsanew dict with keys from sequence s, each with optional value v
d.get (k) Returns the value for key k in d

d.items() Returns a view object of key-value pairs in d

d.keys() Returns a view object of keys in d

d.pop (k) Removes and returns the value for key k in d

d.popitem() Removes and returns the last-inserted key-value pair from d
d.setdefault(k, v) Returns the value for the key k in d; inserts v if absent
d.update(d_) Updates d with key-value pairs from another dictionary d_
d.values () Returns a view object of values in d

Note that most of these methods apply to dictionary instance d, either mutating
d or returning something from d. However, the fromkeys () method is called from
the class dict because it has nothing to do with an instance. Such methods are

Introduction 19

called class methods; the other methods we’ve considered thus far are instance
methods.
Dictionary view objects—returned by items(), keys (), and values()—are

dynamically updating objects that change with their dictionary. For instance,
| d = {uau : 1, "b": 2}
| d_keys = d.keys()
| print(f"View object before: {d_keys}")
| d["C"] =3
| print (£"View object after: {d_keys}")
This returns

View object before: dict_keys(['a', 'b'])

View object after: dict_keys(['a', 'b', 'c'])
View objects can be converted to lists with the 1ist () function, asin 1ist (d_keys).

Example 1.4

Write a program that meets the following requirements:

1. It defines a list of strings names = ["Mo", "Jo", "Flo"]

2. It constructs a dict instance data with keys from the list names

3. It creates and populates a sub-dict with the follow properties for each

name:

a. Mo—year: sophomore, major: Mechanical Engineering, GPA: 3.44
b. Jo—year: junior, major: Computer Science, GPA: 3.96
¢. Flo—year: sophomore, major: Philosophy, GPA: 3.12

4. It prints each of the students’ name and year

5. It replaces Jo's GPA with 3.98 and prints this new value

6. It removes the entry for Mo and prints a list of remaining keys in data

The following program meets the given requirements:

20

names = [IIMOII’ IIJOII, ”FlO"]

#/% Populate Data

datal["Mo"] = {}

data["Mo"] ["year"] = "sophomore"

data["Mo"] ["major"] = "Mechanical Engineering"
datal["Mo"] ["GPA"] = 3.44

data["Jo"] = {}

datal["Jo"] ["year"] = "junior"
data["Jo"]["major"] = "Computer Science"
data["Jo"]["GPA"] = 3.96

data["Flo"] = {}

data["Flo"] ["year"] = "sophomore"
data["Flo"] ["major"] = "Philosophy"
data["Flo"]["GPA"] = 3.12

#)% Data Operations and Printing
print(f"Mo is a {datal'Mo']['year']}. "
f"Jo is a {datal['Jo']['year']}. "
f"Flo is a {datal['Flo']['year']}.")
data["Jo"]J["GPA"] = 3.98
print(f"Jo's new GPA is {datal['Jo']I['GPA']}")
data.pop("Mo")
print (f"Names sans Mo: {list(data.keys())}")

This prints the following in the console:

Mo is a sophomore. Jo is a junior. Flo is a sophomore.
Jo's new GPA is 3.98
Names sans Mo: ['Jo', 'Flo'l]

data = dict.fromkeys(names) # => {"Mo": None, "Jo": None, "Flo": None}

Chapter 1

Introduction 21

1.7 Functions

In Python, functions are reusable blocks of code that accept input
arguments and return one or more values. As we have seen, a method
is a special type of function that is contained within an object. We typically do not
refer to methods as “functions,” instead reserving the term for functions that are
not methods. A function that computes the square root of the sum of the squares of
two arguments can be defined as:

| def root_sum_squared(argl, arg2):

| sum_squared = argl**2 + arg2**2

| return sum_squared#*(1/2)

The syntax requires the block of code following the def line to be indented. A
block ends where the indent ends. The indent should, by convention, be 4 space
characters. The function ends with a return statement, which begins with the
keyword return followed by an expression, the value of which is returned to the
caller code. The variable sum_squared is created inside the function, so it is local
to the function and cannot be accessed from outside. Calling (using) this function
could look like

| root_sum_squared(3, 4)

This call returns the value 5. 0.

The arguments argl and arg?2 in the previous example are called positional
arguments because they are identified in the function call by their position; that
is, 3 is identified as argl and 4 is identified as arg2 based on their positions in
the argument list. There is another type of argument, called a keyword argument
(sometimes called a “named” argument), that can follow positional arguments and
have the syntax <key>=<value>. For instance, we could augment the previous
function as follows:
| def root_sum_squared(argl, arg2, pre="RSS ="):
| sum_squared = argl#*2 + arg2##2
| rss = sum_squared*(1/2)
| print (pre, rss)
| return rss

The pre positional argument is given a default value of "RSS =", and the function
now prints the root sum square with pre prepended. Calling this function with

| sum_squared (4, 6)

prints the following to the console:

RSS = 7.211102550927978

Alternatively, we could pass a value to pre with the call

https://engineering-computing.ricopic.one/v3
https://engineering-computing.ricopic.one/v3

