
Introduction 17

Because tuples are immutable, there are only two built-in tuplemethods, count()
and index(). The count()method returns the number of times its argument occurs
in the tuple. For instance,

t = (-7, 0, 7, -7, 0, 0)
t.count(-7) # => 2

The index()method returns the index of the first occurrence of its argument. For
instance,

t = ("foo", "bar", "baz", "foo", "bar", "baz", "baz")
t.index("baz") # => 2

The range built-in type is a compact way or representing sequences of integers.
A range can be constructed with the range(start, stop, step) constructor
function, as in the following examples:

list(range(0, 3, 1)) # => [0, 1, 2]
list(range(2, 6, 1)) # => [2, 3, 4, 5]
list(range(0, 3)) # => [0, 1, 2] (step=1 by default)
list(range(3)) # => [0, 1, 2] (start=0 by default)

Note that we have wrapped the ranges in list() functions, which converted
each range to a list. This was only so we can see the values it represents; alone, an
expression like range(0, 3) returns itself. This is why a range is such a compact
data point—all that needs to be stored in memory are the start, stop, and step
arguments because the intermediate values are implicit.

1.6 Dictionaries LINK
OW

The built-in Python dictionary class dict is an unordered collection
of elements, each of which has a unique key and a value. A key
can be any immutable object, but a string is most common. A value can be any
object. The basic syntax to create a dict object with keys kG and values vG is
{k1: v1, k2: v2, ...}. For instance, we can define a dict as follows:
d = {"foo": 5, "bar": 1, "baz": -3}

Accessing a value requires its key. To access a value in dictionary dwith key k,
use the syntax d[k]. For example,

https://engineering-computing.ricopic.one/ow
https://engineering-computing.ricopic.one/ow

18 Chapter 1

d = { # It is often useful to break lines at each key-value pair
"name": "Spiff",
"age": 33,
"occupation": "spaceman",
"enemies": ["Zorgs", "Zargs", "Zogs"]

}
print(f"{d['name']} is a {d['age']} year old"

f"{d['occupation']} who fights {d['enemies'][0]}.")

This returns

Spiff is a 33 year old spaceman who fights Zorgs.

A value v with key k can be added to an existing dictionary d with the syntax
d[k] = v. For instance, (Filik et al. 2019)
d = {} # Empty dictionary
d["irony"] = "The use of a word to mean its opposite."
d["sarcasm"] = "Irony intended to criticize."

Dictionaries are mutable; therefore, we can change their contents, as in the
following example:

d = {}
d["age"] = 33 # d is {"age": 33}
d["age"] = 31 # d is {"age": 31}

Dictionaries have several handy methods; these are listed in table 1.7.

Table 1.7. Dictionary instance methods for dictionary instance d and class method for
class dict.

Methods Descriptions

d.clear() Clears all items from d
d.copy() Returns a shallow copy of d
dict.fromkeys(s[, v])Returns a new dict with keys from sequence s, each with optional value v
d.get(k) Returns the value for key k in d
d.items() Returns a view object of key-value pairs in d
d.keys() Returns a view object of keys in d
d.pop(k) Removes and returns the value for key k in d
d.popitem() Removes and returns the last-inserted key-value pair from d
d.setdefault(k, v) Returns the value for the key k in d; inserts v if absent
d.update(d_) Updates d with key-value pairs from another dictionary d_
d.values() Returns a view object of values in d

Note that most of these methods apply to dictionary instance d, either mutating
d or returning something from d. However, the fromkeys()method is called from
the class dict because it has nothing to do with an instance. Such methods are

Introduction 19

called class methods; the other methods we’ve considered thus far are instance
methods.
Dictionary view objects—returned by items(), keys(), and values()—are

dynamically updating objects that change with their dictionary. For instance,

d = {"a": 1, "b": 2}
d_keys = d.keys()
print(f"View object before: {d_keys}")
d["c"] = 3
print(f"View object after: {d_keys}")

This returns

View object before: dict_keys(['a', 'b'])
View object after: dict_keys(['a', 'b', 'c'])

View objects can be converted to lists with the list() function, as in list(d_keys).

Example 1.4

Write a program that meets the following requirements:

1. It defines a list of strings names = ["Mo", "Jo", "Flo"]
2. It constructs a dict instance datawith keys from the list names
3. It creates and populates a sub-dict with the follow properties for each

name:

a. Mo—year: sophomore, major: Mechanical Engineering, GPA: 3.44
b. Jo—year: junior, major: Computer Science, GPA: 3.96
c. Flo—year: sophomore, major: Philosophy, GPA: 3.12

4. It prints each of the students’ name and year
5. It replaces Jo’s GPA with 3.98 and prints this new value
6. It removes the entry for Mo and prints a list of remaining keys in data

The following program meets the given requirements:

20 Chapter 1

names = ["Mo", "Jo", "Flo"]
data = dict.fromkeys(names) # => {"Mo": None, "Jo": None, "Flo": None}

#%% Populate Data
data["Mo"] = {}
data["Mo"]["year"] = "sophomore"
data["Mo"]["major"] = "Mechanical Engineering"
data["Mo"]["GPA"] = 3.44
data["Jo"] = {}
data["Jo"]["year"] = "junior"
data["Jo"]["major"] = "Computer Science"
data["Jo"]["GPA"] = 3.96
data["Flo"] = {}
data["Flo"]["year"] = "sophomore"
data["Flo"]["major"] = "Philosophy"
data["Flo"]["GPA"] = 3.12

#%% Data Operations and Printing
print(f"Mo is a {data['Mo']['year']}. "

f"Jo is a {data['Jo']['year']}. "
f"Flo is a {data['Flo']['year']}.")

data["Jo"]["GPA"] = 3.98
print(f"Jo's new GPA is {data['Jo']['GPA']}")
data.pop("Mo")
print(f"Names sans Mo: {list(data.keys())}")

This prints the following in the console:

Mo is a sophomore. Jo is a junior. Flo is a sophomore.
Jo's new GPA is 3.98
Names sans Mo: ['Jo', 'Flo']

Introduction 21

1.7 Functions LINK
V3

In Python, functions are reusable blocks of code that accept input
arguments and return one or more values. As we have seen, a method
is a special type of function that is contained within an object. We typically do not
refer to methods as “functions,” instead reserving the term for functions that are
not methods. A function that computes the square root of the sum of the squares of
two arguments can be defined as:

def root_sum_squared(arg1, arg2):
sum_squared = arg1**2 + arg2**2
return sum_squared**(1/2)

The syntax requires the block of code following the def line to be indented. A
block ends where the indent ends. The indent should, by convention, be 4 space
characters. The function ends with a return statement, which begins with the
keyword return followed by an expression, the value of which is returned to the
caller code. The variable sum_squared is created inside the function, so it is local
to the function and cannot be accessed from outside. Calling (using) this function
could look like

root_sum_squared(3, 4)

This call returns the value 5.0.
The arguments arg1 and arg2 in the previous example are called positional

arguments because they are identified in the function call by their position; that
is, 3 is identified as arg1 and 4 is identified as arg2 based on their positions in
the argument list. There is another type of argument, called a keyword argument

(sometimes called a “named” argument), that can follow positional arguments and
have the syntax <key>=<value>. For instance, we could augment the previous
function as follows:

def root_sum_squared(arg1, arg2, pre="RSS ="):
sum_squared = arg1**2 + arg2**2
rss = sum_squared**(1/2)
print(pre, rss)
return rss

The pre positional argument is given a default value of "RSS =", and the function
now prints the root sum square with pre prepended. Calling this function with

sum_squared(4, 6)

prints the following to the console:

RSS = 7.211102550927978

Alternatively, we could pass a value to prewith the call

https://engineering-computing.ricopic.one/v3
https://engineering-computing.ricopic.one/v3

