
Introduction 21

1.7 Functions LINK
V3

In Python, functions are reusable blocks of code that accept input
arguments and return one or more values. As we have seen, a method
is a special type of function that is contained within an object. We typically do not
refer to methods as “functions,” instead reserving the term for functions that are
not methods. A function that computes the square root of the sum of the squares of
two arguments can be defined as:

def root_sum_squared(arg1, arg2):
sum_squared = arg1**2 + arg2**2
return sum_squared**(1/2)

The syntax requires the block of code following the def line to be indented. A
block ends where the indent ends. The indent should, by convention, be 4 space
characters. The function ends with a return statement, which begins with the
keyword return followed by an expression, the value of which is returned to the
caller code. The variable sum_squared is created inside the function, so it is local
to the function and cannot be accessed from outside. Calling (using) this function
could look like

root_sum_squared(3, 4)

This call returns the value 5.0.
The arguments arg1 and arg2 in the previous example are called positional

arguments because they are identified in the function call by their position; that
is, 3 is identified as arg1 and 4 is identified as arg2 based on their positions in
the argument list. There is another type of argument, called a keyword argument

(sometimes called a “named” argument), that can follow positional arguments and
have the syntax <key>=<value>. For instance, we could augment the previous
function as follows:

def root_sum_squared(arg1, arg2, pre="RSS ="):
sum_squared = arg1**2 + arg2**2
rss = sum_squared**(1/2)
print(pre, rss)
return rss

The pre positional argument is given a default value of "RSS =", and the function
now prints the root sum square with pre prepended. Calling this function with

sum_squared(4, 6)

prints the following to the console:

RSS = 7.211102550927978

Alternatively, we could pass a value to prewith the call

https://engineering-computing.ricopic.one/v3
https://engineering-computing.ricopic.one/v3

22 Chapter 1

sum_squared(4, 6, pre="Root sum square =")

which prints

Root sum square = 7.211102550927978

1.8 Branching LINK
CL

There are special statements in all programming languages that allow
the programmer to control which portions are to be executed next (or
at all); that is, the control flow. The primary forms of control flow statements are
branching and looping, and we introduce branching in this section and looping in
section 1.9.

1.8.1 Branching with if/elif/else Statements

Branching control flow statements are based on logical conditions that are tested by
the statement. The primary branching statements in Python are the if/elif/else
statements. For instance, consider the following statements:

if x < 0:
print("negative")

elif x == 0:
print("zero")

else:
print("positive")

If x is less than 0, it will print negative; if x is equal to 0, it will print zero, and
otherwise (when x is positive) it will print positive. Note that the blocks of code
that follow the branching statements must be indented. The elif (i.e., else if) and
else statements are optional, and there can be multiple elif statements. Once
a condition is met and the corresponding block executed, the rest of the control
statements in the block are skipped.
The conditional expression is evaluated to a bool type (class). A boolean object

can have one of two possible values, True and False. If the conditional expression of
a branching statement evaluates to True, its corresponding block of code is executed.
Note that Python will evaluate non-boolean conditional expression value with the
built-in bool() function. For instance, if the conditional expression evaluates to a
string "foo", it will be evaluated as bool("foo"), which, like all nonempty strings,
evaluates to True. However, an empty string "" evaluates to False.

https://engineering-computing.ricopic.one/cl
https://engineering-computing.ricopic.one/cl

