
22 Chapter 1

sum_squared(4, 6, pre="Root sum square =")

which prints

Root sum square = 7.211102550927978

1.8 Branching LINK
CL

There are special statements in all programming languages that allow
the programmer to control which portions are to be executed next (or
at all); that is, the control flow. The primary forms of control flow statements are
branching and looping, and we introduce branching in this section and looping in
section 1.9.

1.8.1 Branching with if/elif/else Statements

Branching control flow statements are based on logical conditions that are tested by
the statement. The primary branching statements in Python are the if/elif/else
statements. For instance, consider the following statements:

if x < 0:
print("negative")

elif x == 0:
print("zero")

else:
print("positive")

If x is less than 0, it will print negative; if x is equal to 0, it will print zero, and
otherwise (when x is positive) it will print positive. Note that the blocks of code
that follow the branching statements must be indented. The elif (i.e., else if) and
else statements are optional, and there can be multiple elif statements. Once
a condition is met and the corresponding block executed, the rest of the control
statements in the block are skipped.
The conditional expression is evaluated to a bool type (class). A boolean object

can have one of two possible values, True and False. If the conditional expression of
a branching statement evaluates to True, its corresponding block of code is executed.
Note that Python will evaluate non-boolean conditional expression value with the
built-in bool() function. For instance, if the conditional expression evaluates to a
string "foo", it will be evaluated as bool("foo"), which, like all nonempty strings,
evaluates to True. However, an empty string "" evaluates to False.

https://engineering-computing.ricopic.one/cl
https://engineering-computing.ricopic.one/cl


Introduction 23

Example 1.5

Write and test a Python program that prints a string variable if it is nonempty,
and prints Empty string otherwise.

We will want to test our program on a nonempty and an empty string, so we will
want to reuse our code; this indicates the use of a function definition. Consider
the following program:

def print_nonempty(s):
if s:

print(s)
else:

print("Empty string")

print_nonempty("This should print")
print_nonempty("") # This should print "Empty string"

The if statement has conditional expression s, which should be a string. There-
fore, if it is nonempty, print(s)will evaluate. Otherwise (i.e., if s is an empty
string), the statement print("Empty string")will evaluate. As we expect, the
program prints the following to the console:

This should print
Empty string

1.8.2 Branching with match/case Statements

In Python 3.10, a new kind of branching statement was introduced: match/case.
Its use is never strictly necessary, but it can make a program more readable. For
example,

if s == "red":
print("red")

elif s == "blue":
print("blue")

else:
print("other")

can be written alternatively as

match s:
case "red":

print("red")
case "blue":

print("blue")
case _:

print("other")



24 Chapter 1

In the third case _matches when there is no other match. Once there is a match, no
other cases are tested. If there is no match (and _ is not given as a case), none of the
code blocks are evaluated.
There are more advanced uses of match/case statements in which patterns can

be matched. See Python Community (2024a; § 4.6) for more details.

1.8.3 Branching with try/except/finally Statements

Sometimes a statement can yield an exception, which is not a syntax error, but has
a similar effect in that it can stop the execution of the program. Common exceptions
include ZeroDivisionError, NameError and TypeError.
In general, an exception stops the execution of a program; however, certain

exceptions can be anticipated and dealt with accordingly, which is called excep-
tion handling. One of the primary ways to handle exceptions is to use the
try/except/finally statements. We can think of these statements as branch-
ing statements that branch based on exceptions. For instance consider the following
function definition:

def plus_7(x):
try:

y = x + 7
except:

y = x
return y

If we can add 7 to x, which is the case when x is a number, the try statement will
execute, the except statement will be skipped, and the sum will be returned. If,
however, we cannot add 7 to x, which is the case when x is nonnumeric, the try
statement will raise an exception, so the except statement will be executed; this
returns the input without change.
We will later return to exception handling to consider more advanced usage,

including the finally statement.



Introduction 25

1.9 Looping LINK
IX

Repeating blocks of code by calling a function more than once, as in
example 1.5, can get cumbersome when it needs to be repeated many
times. A loop repeats a block until some stopping condition is met. One type of
loop in Python is a while loop, which repeats a block of code while its conditional
expression evaluates to True. For instance,

n = 0 # Initialize n
while n < 5:

print(n)
n += 1 # Increment n (i.e., n = n + 1)

The loop evaluates the conditional expression n < 5 and, if in fact n < 5, executes
the block of code. After the block finishes, the test is repeated and potentially the
block of code. Thiswill repeat indefinitely, until the conditional expression evaluates
to False, in which case the loop exits and execution resumes after the code block.
The block will be executed 5 times, printing 0 through 4 to the console.
Another type of Python loop is a for loop, which has no explicit conditional

expression, instead iterating through an iterable object like a list, , until it reaches
the end. For example,

l = ["foo", "bar", "baz"]
for s in l:

print(f"Say {s}")

This prints

Say foo
Say bar
Say baz

It is common to loop through a rangewith a for loop, as in the following:

for k in range(2, 8):
print(k, end=" ") # Prints on the same line

This prints the following to the console:

2 3 4 5 6 7

Often, a loop index is required inside a for loop. The syntax for this requires an
identifier for the index and an enumerate type object to be iterated through. The
constructor function enumerate() assigns an index to each element of its iterable
argument (e.g., a list). For instance,

https://engineering-computing.ricopic.one/ix
https://engineering-computing.ricopic.one/ix

