34 Chapter 2

2.3 The Python Standard Library and Packages 9
T

This section introduces the importing of modules from the Python
standard library and the importing of external code libraries (pack-
ages).

2.3.1 The Standard Library

Like many programming languages, Python has an extensive standard library with
many built-in data types, constants, functions, and modules included. We have
encountered some of these already, and this section gives a very short introduction
to some additional aspects of the library.

Some of the standard library is available in the built-in namespace, such as the
constants True, False, and None and the functions print (), len(), and type ().
However, much of the standard library requires the importing of modules. A list
of modules of particular interest to the engineer is given in table 2.1.

Table 2.1. Python standard library modules of particular interest to the engineer.

Module Description

math Math constants and functions for integers and real numbers.

cmath Math constants and functions for integers, real numbers, and complex numbers.
random Functions for generating pseudorandom numbers.

os Functions for interacting with the computer’s operating system and file system.
pathlib Classes for representing file paths in an operating-system independent way.
json Functions for importing and exporting data in the universal JSON format.
pickle Functions for saving and loading objects to files in serialized (compact) form.

Just as with our own modules, we can import a module from the standard library
with
| import math

and the related variations of import. The standard library modules are always in
the Python search path, which is a list of directories in which Python searches for
modules. The search path begins locally, so if you create a module math.py, the
search path will find it before the standard library version.


https://engineering-computing.ricopic.one/tq
https://engineering-computing.ricopic.one/tq

The Structure, Style, and Design of Programs 35

2.3.2 Packages

In addition to the standard library modules, a vast collection of Python packages
can be installed and imported. A package is a collection of modules. Packages are
created to organize code into reusable units and distribute them to others.

The official source for Python packages is the Python Package Index (PyPI)
(Python Community 2024b). The pip program distributed with Python is the most
popular tool for installing and managing packages. Packages can be installed in
Anaconda environments with pip, but the use of its own package manager called
conda is preferred. The base Anaconda environment comes with many preinstalled
packages useful for engineering computing. The installation process for installing a
package includes adding the package to the Python path so that it is available to all
your Python programs.

Once a package is installed, it can be imported in a script. Most packages import
by default one or more modules; this allows us to import the package in our script
without individually importing each module. For instance, if we would like to use
a function do_something() in the foo.py module of the pkg package, we could
write the following:

| import pkg # Import the entire package
| pkg.foo.do_something() # Call a function in a module loaded by default

If the module is not loaded by default, or if we would only like to load a specific
module, we can manually import the module in the usual way:

| import pkg.foo # Import the module
| pkg.foo.do_something() # Call a function in the module

Often, packages will import some important functions into its top-level names-
pace such that they can be called with a shorter name. In the example above, the
package could elevate do_something() to its top-level namespace such that it can
be called via pkg.do_something().

Packages can contain packages, called subpackages. Simple packages do not
require this nesting feature, but large and complex packages may.

You may one day create a package of your own. All that is required is to place
your modules into a directory. If you place a special file named __init__.pyin
the directory my_pkg, it will be executed whenever the package is loaded.! Often,
we want to load certain (or all) modules in this file such that they are imported by
default when the package is loaded.

Your package can be distributed via PyPI or another means.

1. For earlier versions of Python, the __init__.py file was obligatory for a package. Now it is optional
but advisable.



36 Chapter 2

Box 2.1 Further Reading

e Python Community (2024a; § The Python Standard Library)

e Python Community (2024a; § The Python Tutorial, 10. Brief Tour of the
Standard Library)

e Python Community (2024b), to browse PyPI packages

o Python Community (2024c), for information about creating and distributing
packages

2.4 Namespaces, Scopes, and Contexts

A namespace is a binding of (i.e., a map from) names (identifiers)
to objects. Each name is unique within a namespace. For instance,
there can be only one variable x. In Python, as in many programming languages,
namespaces are created and destroyed throughout the execution of a program.
When a main script is run, the Python interpreter creates (and never destroys) the
built-in namespace that includes mappings for several built-in objects such as the
functions print (), len(), and abs () and the constants True, False, and None.

As we saw in section 2.2, the names in a namespace for an imported module
a_module begin with the name of the module, as in a_module.do_something().
Or, if the module was imported with an alias, as in import a_module as am, the
names in its namespace begin with am.

The main script or a module has a top-level namespace called the global names-
pace. Names defined in the script or module and outside of any function or class
definition go into this top-level namespace. The execution of a function or class cre-
ates a new namespace for it. This is true for nested function and class definitions, as
well. Therefore, a hierarchy of namespaces is created with nested function and class
definitions. At the bottom of this hierarchy is an innermost local namespace. Levels
below the global namespace and above a local namespace are called non-local
namespaces (i.e., enclosing namespaces).

The scope of a name binding (to an object) is the portion of the code of a program
in which the name is bound (i.e., where it can be used).? The scope of x = 3 is
the part of the code in which the use of x will return that 3. The context for a
given portion of a program is the collection of all bound names and the ordering of
namespaces searched when a name is used. The context of a scope of names in a
local namespace has the following search priority:

1. Local namespace

2. Sometimes the term “scope” is used to mean what we call a “context of a scope.” We will try to avoid
this usage, but it is quite common.


https://engineering-computing.ricopic.one/yz
https://engineering-computing.ricopic.one/yz

