
36 Chapter 2

Box 2.1 Further Reading

• Python Community (2024a; § The Python Standard Library)
• Python Community (2024a; § The Python Tutorial, 10. Brief Tour of the
Standard Library)
• Python Community (2024b), to browse PyPI packages
• Python Community (2024c), for information about creating and distributing
packages

2.4 Namespaces, Scopes, and Contexts LINK
YZ

A namespace is a binding of (i.e., a map from) names (identifiers)
to objects. Each name is unique within a namespace. For instance,
there can be only one variable x. In Python, as in many programming languages,
namespaces are created and destroyed throughout the execution of a program.
When a main script is run, the Python interpreter creates (and never destroys) the
built-in namespace that includes mappings for several built-in objects such as the
functions print(), len(), and abs() and the constants True, False, and None.
As we saw in section 2.2, the names in a namespace for an imported module

a_module begin with the name of the module, as in a_module.do_something().
Or, if the module was imported with an alias, as in import a_module as am, the
names in its namespace begin with am.
The main script or a module has a top-level namespace called the global names-

pace. Names defined in the script or module and outside of any function or class
definition go into this top-level namespace. The execution of a function or class cre-
ates a new namespace for it. This is true for nested function and class definitions, as
well. Therefore, a hierarchy of namespaces is created with nested function and class
definitions. At the bottom of this hierarchy is an innermost local namespace. Levels
below the global namespace and above a local namespace are called non-local

namespaces (i.e., enclosing namespaces).
The scope of a name binding (to an object) is the portion of the code of a program

in which the name is bound (i.e., where it can be used).2 The scope of x = 3 is
the part of the code in which the use of x will return that 3. The context for a
given portion of a program is the collection of all bound names and the ordering of
namespaces searched when a name is used. The context of a scope of names in a
local namespace has the following search priority:

1. Local namespace

2. Sometimes the term “scope” is used to mean what we call a “context of a scope.” We will try to avoid
this usage, but it is quite common.

https://engineering-computing.ricopic.one/yz
https://engineering-computing.ricopic.one/yz


The Structure, Style, and Design of Programs 37

2. Non-local namespaces
3. Global namespace
4. Built-in namespace

For instance, consider the namespaces, scopes, and contexts for the following
script:

x = 3
print(f"Global x: {x}")
def plus_7(y):

x = y + 7
print(f"Local x: {x}")
return x

plus_7(x)
print(f"Global x: {x}")

This prints the following to the console:

Global x: 3
Local x: 10
Global x: 3

To interpret these results, we see that the statement x = 3 binds the name x in the
global namespace such that Global x: 3 is printed. The context for this portion of
code is the collection of bindings for the names in the global and built-in names-
paces and the search priority (1) global namespace and (2) built-in namespace. The
plus_7() function definition creates a new local namespace in which x is bound
with the assignment x = y + 7. The context for the function code block is the set of
bindings for the names in the local, global, and built-in namespaces and the search
priority (1) local namespace, (2) global namespace, and (3) built-in namespace.
Therefore, the use of x here searches the local namespace first; finding one upon
the function being called, it prints (in this case) Local x: 10. Finally, we see that
the global namespace x has been unchanged by the local assignment.

Example 2.1

In the previous example, if we remove the local assignment x = y + 7, what
happens?

Because there is no binding of x in the local namespace of the function, x is not
found here. Therefore, the global namespace is searched; the global namespace
x is found and used within the function. This results in the program printing

Global x: 3
Local x: 3
Global x: 3



38 Chapter 2

Note that if x had not been found in the global namespace, the built-in namespace
would have been searched. Because this namespace also lacks a binding for x, a
NameErrorwould be raised.

The use of global or non-local names within a function or class definition is
generally discouraged. It is difficult to read and debug code that refers to names
outside of its local namespace. We prefer to pass necessary objects through input
arguments. Even worse than the use of global names within a function or class
definition is their reassignment or their bound object’s mutation. Rarely necessary
and nearly always a bad idea, this can be achieved with the use of the global
and nonlocal keywords. Without these keywords, global and non-local names are
read-only. With their use, global and non-local names can be reassigned and bound
objects mutated, as in the following example:

x = 3
print(f"Global x: {x}")
def plus_7(y):

global x
x = y + 7
print(f"Local x: {x}")
return x

plus_7(x)
print(f"Global x: {x}")

This prints the following to the console:

Global x: 3
Local x: 10
Global x: 10

So we have altered x in the global namespace. Again, it is inadvisable to use this
unless absolutely necessary.



The Structure, Style, and Design of Programs 39

2.5 Defining Classes LINK
RF

Defining a custom class is an extremely useful way to use Python.
A class object has two kinds of class attributes: data attributes that
store data andmethods, which, as we have already seen, are functions that belong
to and often operate on instances of an object.
A custom class is a convenient way to represent many kinds of objects in engi-

neering. Here are some examples with potential data attributes and methods
included:

• A time-varying signal class with data attributes periodic, period,
amplitude, and frequency and methods rms(), abs(), and plot()
• An experiment simulation class with data attributes time, executed, input,
and output and methods execute(), plot(), and save()
• A truss class with data attributes members, connections, pin_angles,
member_forces, and reactions andmethods analyze(), max_compression(),
max_tension(), and max_reaction()

The basic syntax for a class definition is as follows:

class ClassName:
"""Docsting description"""
<Statement 1>
<Statement 2>
<etc.>

Data attributes can be defined via the usual variable assignment syntax and gener-
ally follow the docstring. Method definitions follow data attributes. Consider the
following class definition to represent a screwdriver tool (perhaps in the context of
a robot’s inventory of available tools):

class Screwdriver:
"""Represents a screwdriver tool"""
operates_on = "Screw" # Class data attributes
operated_by = "Hand"

def drive(self, screw, angle): # Method definition
"""Returns a screw object turned by the given angle"""
return screw.turn(angle)

Any object that is an instance of the class Screwdriver will have the class
attributes defined above. To create an instance (i.e., instantiate), call the class name
as if it were a function with no arguments, as follows:

https://engineering-computing.ricopic.one/rf
https://engineering-computing.ricopic.one/rf

