
46 Chapter 2

Box 2.2 Further Reading

• Rossum, Warsaw, and Coghlan (2024), the general Python style guide
• Rossum, Lehtosalo, and Langa (2024), the original type hint style guide
• Gonzalez et al. (2024), the variable annotation style guide
• Google (2024), the Google Python style guide

2.7 The Design of Programs LINK
MW

Aprogram should be designed. Engineers are designers, so we should
make excellent programmers. Unfortunately, many engineers fail to
carefully consider the design of their programs, at least when it comes to those
programs used for analysis and design. This often leads to programs that function
poorly and are difficult to maintain. The costs associated with this are usually much
greater than those accrued by a systematic design process.5

How should a program be designed? Software design methods abound; how-
ever, they are similar to the (many) design methods used for more conventional
engineering products. Our familiarity with these, as engineers, may allow a cursory
introduction to suffice.
A design typically begins with a design problem: a product (i.e., solution) is

desired, one that does something (i.e., produces an output) for someone (i.e., a cus-
tomer). For engineering computing programs, we engineers are often the customers,
and the output is usually information for an analysis or design problem. The prod-
uct or solution is the program itself. The design problem is often rather ill-defined
at first, and we must question the customer about their goals throughout the design
process. Often, the problem we thought we were solving at the beginning changes
throughout the design process. Similarly, the program (solution) undergoes several
iterations.
Two of the most important ways to think about program design are introduced

in the rest of this section: (1) the functional analysis design method and (2) the
pseudocode algorithm representation.

5. It should be noted, however, that for back-of-the-envolope calculations, we need not spend the time
on a systematic design process. A paradigm I like to use is to create an exploratory play.py file in a
project or simply use an interactive session. In this type of environment, we can explore without concern
for structure, style, and careful design processes.

https://engineering-computing.ricopic.one/mw
https://engineering-computing.ricopic.one/mw


The Structure, Style, and Design of Programs 47

2.7.1 The Functional Analysis Design Method

One way to organize our thinking about the program (solution) is to begin at the
highest level and ask the question:

What will the program start with and what will it need to produce?

This amounts to the question: What are its inputs and outputs? Figure 2.1a
illustrates this high-level conception of the program as a block that transforms
inputs into outputs.

Product
(Program)

Inputs Outputs

(a) High-level product functionality.

FunctionInputs Outputs

(b) General function.

Figure 2.1. The functional design method (a) at the highest level and (b) in general, for
any level.

This is the beginning of the functional analysis design method. We have treated
the program as a function, which, like a mathematical function, maps inputs to
ouputs. The next step is to consider the question:

How can the program achieve this transformation of its inputs to its outputs?

Many techniques may be explored, but often they can be separated into subfunc-
tions. The subfunctions can themselves have subfunctions. This way of breaking
down the problem into functions and subfunctions is the key to the power of the
functional analysis design method. We see that, at all levels, the paradigm of map-
ping of inputs to outputs through functions applies, as illustrated in figure 2.1b.
Drawing these functional blocks and connecting their inputs and outputs is a crucial
step in a program design process.
In Python program design, we have Python functions (section 1.7) and methods

(section 1.3) to perform the role of the function blocks in the functional analysis
designmethod. Inputs are passed as input arguments (or objects) and outputs are the
returned values (or mutated objects). If we begin by sketching a functional diagram
of inputs, outputs, and functional blocks from the highest level to the lowest, the
programming of the corresponding Python functions and methods becomes a
matter of implementing a structure we have already thoroughly considered. This
technique is a great way to overcome the anxiety of the “blank page.”



48 Chapter 2

2.7.2 Algorithm Representation via Pseudocode

At a certain depth, the functional blocks of section 2.7.1 have reached a level that is
best treated as indivisible. It is not always obvious when this point is reached, but
we can always iterate later. From here, simple functional blocks can be implemented
directly in Python functions. For complex functions, a more complex sequence of
steps may be necessary. We call a sequence of steps like this an algorithm.6

It is often useful to outline an algorithm schematically in a language we call
pseudocode. This is a loose but programming-like language used to describe
the algorithm without concern for syntax and implementation details. That is,
pseudocode is used to express in structured natural language the semantics of a
program without concern for its syntax in any specific programming language. The
term “structured” here means some familiar programming structures—such as
assignments, branches, loops, and functions—appear in pseudocode.
A sorting algorithm is an algorithm for sorting the elements of a list (e.g., num-

bers) by some metric (e.g., magnitude) such that the input list is returned ordered.
There are many sorting algorithms with different efficiencies, but a relatively sim-
ple one is called bubble sort. For the sake of simplicity, we consider a list of =
distinct numbers to be ordered such that they have increasing value. This algorithm
repeatedly passes through the list, comparing adjacent elements and swapping their
positions if they are out of order. After a single pass through the list, the greatest
element will be in the last position because in every pairing, it is the greater. After
the second pass, the second-greatest element will be in the penultimate position.
After = − 1 passes, the list should be sorted.
In pseudocode, we can describe the algorithm more precisely, as shown in

algorithm 1.

Algorithm 1 bubble_sort_basic pseudocode

function bubble_sort_basic(list)
for 8← 0, = − 1 do ⊲ Repeat = times

for 9← 0, = − 8 − 1 do ⊲ Pass through potentially unsorted elements
if ;8BC[9]> ;8BC[9 + 1] then

Swap ;8BC[9] and ;8BC[9 + 1]
return list

Can you think of a way to improve this algorithm? Often, when we write out
the algorithm in pseudocode, it becomes more clear and improvements suggest
themselves.
Once the algorithm for all complex functions are written in pseudocode, it is time

to implement them as Python functions or methods. The functional analysis design

6. The term “algorithm” is actually quite broad, encompassing any technique for solving a problem.



The Structure, Style, and Design of Programs 49

diagrams of section 2.7.1 and the pseudocode algorithms from this section will help
us rationalize this process and greatly improve our programs.

Box 2.3 Further Reading

• Abelson and Sussman (2016), a classic that teaches us how to think about
computer programs
• Cross (2021), an engineering design methods (not specific to software) book
with formal methods and useful case examples; see especially chapter 7 on the
functional design method
• Hunt and Thomas (1999), a practical approach to designing programs, filled
with nuggets of wisdom



50 Chapter 2

2.8 Problems LINK
VL

Problem 2.1 LINKWQ Write a program in a single script that meets the following
requirements:

a. It imports the standard library randommodule.
b. It defines a function rand_sub() that defines a list of grammatical subjects

(e.g., Jim, I, you, skeletons, a tiger, etc.) and returns a random subject; consider
using random.choice() function.

c. It defines a function rand_verb() that defines a list of verbs in past tense
(e.g., opened, smashed, ate, became, etc.) and returns a random verb.

d. It defines a function rand_obj() that defines a list of grammatical objects
(e.g., the closet, her, crumbs, organs) and returns a random object.

e. It defines a function rand_sen() that returns a random subject-verb-object
sentence as a string beginning with a capital letter and ending with a period.

f. It defines a function rand_par() that returns a random paragraph as a string
composed of 3 to 5 sentences (the number of sentences should be random—
consider using the random.randint(a, b) function that generates an int
between a and b, inclusively). Sentences should be separated by a space " "
character.

g. It calls rand_par() three times and prints the results.

Problem 2.2 LINKSK Rewrite the program from problem 2.1 such that it meets the
following requirements:

a. It defines the functions in a separatemodule with the file name rand_speech
_parts.py.

b. Instead of defining the lists of subjects, verbs, and objects inside the functions,
it assigns a variable to each list in themodule’s global namespace and accesses
them from within the functions. Why is this preferable?

c. It imports the module into the main script.
d. It print three random paragraphs, as before.

Problem 2.3 LINKYE Write a program in a single script that meets the following
requirements:

a. It imports the standard library randommodule.
b. It defines a function rand_step(x, d, ymax, wrap=True) that returns

a float that is the sum of x and a uniformly distributed random float
between -d and d. Consider using the random.uniform(a, b) function that

https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/wq
https://engineering-computing.ricopic.one/sk
https://engineering-computing.ricopic.one/ye

