50

Chapter 2

2.8 Problems

Problem 2.1 @i Write a program in a single script that meets the following
requirements:

a.

b.

.

It imports the standard library random module.

It defines a function rand_sub () that defines a list of grammatical subjects

(e.g., Jim, I, you, skeletons, a tiger, etc.) and returns a random subject; consider

using random. choice() function.

It defines a function rand_verb() that defines a list of verbs in past tense

(e.g., opened, smashed, ate, became, etc.) and returns a random verb.

It defines a function rand_obj () that defines a list of grammatical objects

(e.g., the closet, her, crumbs, organs) and returns a random object.

It defines a function rand_sen() that returns a random subject-verb-object

sentence as a string beginning with a capital letter and ending with a period.
It defines a function rand_par () that returns a random paragraph as a string
composed of 3 to 5 sentences (the number of sentences should be random—
consider using the random.randint (a, b) function that generates an int

between a and b, inclusively). Sentences should be separated by a space " "

character.

It calls rand_par () three times and prints the results.

Problem 2.2 sk Rewrite the program from problem 2.1 such that it meets the
following requirements:

a.

b.

C.

d.

It defines the functions in a separate module with the file name rand_speech
_parts.py.

Instead of defining the lists of subjects, verbs, and objects inside the functions,
it assigns a variable to each list in the module’s global namespace and accesses
them from within the functions. Why is this preferable?

It imports the module into the main script.

It print three random paragraphs, as before.

Problem 2.3 @vE Write a program in a single script that meets the following
requirements:

a.

b.

It imports the standard library random module.

It defines a function rand_step(x, d, ymax, wrap=True) that returns
a float that is the sum of x and a uniformly distributed random float
between -d and d. Consider using the random.uniform(a, b) function that

https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/wq
https://engineering-computing.ricopic.one/sk
https://engineering-computing.ricopic.one/ye

The Structure, Style, and Design of Programs

51

returns a random float between a and b. If wrap is True, it maps a stepped
value y > ymax toy - ymax and a stepped value y < O to ymax + y.If
wrap is False, it maps a stepped value y > ymax to ymax and a stepped
valuey < 0toO.

It defines a function rand_steps(x0, d, ymax, n, wrap=True) that
returns a list of n floats that are sequentially stepped from x0. It passes
wrap to its call to rand_step().

. It defines a function print_slider(k, x) that prints k characters, all of

which are - except that which has index closest to x, for which it prints |.
For instance, print_slider (17, 6.8) should print

Consider using the built-in round () function.
It defines a function rand_sliders(n, k, x0=None, d=3, wrap=True)
that prints n random sliders of k characters and max step d starting at the
index closest to x0, if provided, and otherwise at the index closest k/2.
It prints 25 random wrapped sliders of 44 characters with the default step
range and starting point 2.
It prints 20 random nonwrapped sliders of 44 characters with the step range
5 and starting point 42.

Problem 2.4 3G Rewrite the program from problem 2.3 such that it meets the
following requirements:

a.

b.
c.

d.

It defines the functions in a separate module with the file name rand
_sliding.py.

It imports the module into the main script.

It prints 25 random wrapped sliders of 44 characters with the default step
range and starting point 42.

It prints 20 random nonwrapped sliders of 44 characters with the step range
5 and starting point 2.

Problem 2.5 ?Uz Begin with the Screwdriver, Screw, and SetScrew class
definitions of section 2.5. Add the following features:

e Improve the Screwdriver.drive () method to check that its head matches

the screw head and raise a TypeError exception if they do not

e Improve the Screw class by adding instance attributes pitch that stores the

thread pitch in mm and depth that stores the depth of the screw in its hole

https://engineering-computing.ricopic.one/8g
https://engineering-computing.ricopic.one/uz

52

Chapter 2

e Improve the Screw. turn() method to mutate the depth based on the angle
it is turned, its handing, and its thread pitch’

e Create a subclass MetricScrew from the base class Screw with the additional

class data attribute kind = "Metric"

Test the new features of the Screwdriver, Screw, and MetricScrew classes with
the following steps:

a.

Create an instance ms1 of MetricScrew with right-handedness, a flat head,
initial angle 0 rad, and thread pitch 2 mm (corresponding to an M14 metric
screw)

b. Create an instance sd1 of Screwdriver with a flat head

Turn thems1 screw 5 complete clockwise revolutions with the sd1 screwdriver
and print the resulting angle and depth of ms1

Turn the ms1 screw 3 complete counterclockwise revolutions with the sd1
screwdriver and print the resulting angle and depth of ms1

Create an instance ms2 of MetricScrew that is the same as ms1, but with
left-handedness

Turn the ms2 screw 4 complete counterclockwise revolutions with the sd1
screwdriver and print the resulting angle and depth of ms2

Turn the ms2 screw 2 complete clockwise revolutions with the sd1 screwdriver
and print the resulting angle and depth of ms2

Create an instance sd2 of Screwdriver with a hex head and try to turn the
sd1 screw and catch and print the exception

Problem 2.6 @vx Improve the bubble sort algorithm of algorithm 1 by adding
a test that can return the list if it is sorted before completing all the loops. Imple-
ment the improved bubble sort algorithm in a program that it meets the following
requirements:

a.

b.

It defines a function bubble_sort(1: list) -> list thatimplements the
bubble sort algorithm.

It demonstrates the bubble_sort () function works on three different lists
of numbers.

It demonstrates that the early return functionality, in fact, saves us from
making extra passes through the list.

Problem 2.7 @vs Preprogramming work: In this problem, before writing the pro-
gram specified, (1) draw a functional design method diagram (see section 2.7.1) and
(2) write a pseudocode for each function (see section 2.7.2).

7. A right-handed screw with thread pitch p (mm), turned clockwise an angle « (rad), advances forward
¢=pa/(2n) mm. A full turn (i.e.,, & =2n) advances the screw £ = p mm. Treat clockwise turns as positive

angles.

https://engineering-computing.ricopic.one/vx
https://engineering-computing.ricopic.one/ys

The Structure, Style, and Design of Programs 53

Restrictions: In this problem, most of the functions you will write already exist
in the standard libary module statistics. You may not use this module for this
problem, but you may use others, such as the math module. You may also use list
methods such as sort (). Furthermore, you may not use any external packages.

Programming: Write a program in a single script that meets the following
requirements:

a. Itdefinesafunctionstats(x: list) -> dict thatcomputes the following
basic statistics for input list x of real numbers:
i. The sample mean; for a list x of n values, the sample mean m is
1 n—1
m(x)= - ; X;.

ii. The sample variance; the sample variance s is

n—1
2= ZO (- m().

iii. The sample standard deviation; the sample standard deviation s is

s(x) =+/s2(x).

iv. The median; the median M of a sorted list x of n numbers is value of
the list at index ip; = (n — 1)/2 (i.e., the middle index); more precisely,

M(x) = Xim iy is an integer
L (xiy) +X1ip1) Otherwise

where | -] is the floor function that rounds down and [-] is the ceiling
function that rounds up. So in the case that there is no middle index,
the mode is the mean of the two middle values.

The stats () function should return a dict with the keys "mean", "var",
"std", and "median" correspond to values for the computed sample mean,
variance, standard deviation, and median.

b. It demonstrates the stats() function works on three different lists of
numbers.

Numerical Analysis I: Representations, Input and
Output, and Graphics

Engineering design is usually heavily supported by numerical calculations. One of
the first and enduring uses of computers is to automatically perform these calcu-
lations for engineers; in fact, the first “computers” were humans who performed
numerical calculations by hand, as shown in figure 3.1.

\

Figure 3.1. A “computer room” at the NACA (precursor to NASA) high-speed flight
station in 1949 (NASA 2002).

We call engineering numerical calculations numerical analysis. Many program-
ming languages and software packages have been used for numerical analysis, but
by far the most popular these days are MATLAB and Python. Python’s built-in
data types (e.g., 1ist) and functions (e.g., sum) can be used directly for numerical

https://engineering-computing.ricopic.one/r3
https://engineering-computing.ricopic.one/r3

56 Chapter 3

analysis; however, for most engineering problems it is advantageous to use the
ubiquitous package NumPy (Harris et al. 2020). The primary reasons this is pre-
ferred are that NumPy provides data types, functions, and methods optimized for
numerical calculations, which go far beyond Python’s built-in modules. In the first
several sections of this chapter, we will explore NumPy’s data types (most notably
the array) and some of its basic functions and methods.

The numerical data represented in NumPy often originates as data from outside
the program (e.g., from sensor data gathered via an experiment). Stored in files of
various formats, the data must be read from computer memory! into the program.
This is the most common kind of a program’s inputs. On the other end, a program
can have outputs, frequently data files written to computer memory. In this chapter,
we will learn how to load input data from files and write output data to files.

Another important kind of program output is a graphic—usually a graph, a
plot, or a chart. A graphic is often a very important result of a numerical analysis,
data visualization being a key component of engineering decision making. In this
chapter, we will learn how to use the Python package Matplotlib (Hunter 2007) to
generate graphics from data.

3.1 Arrays

NumPy arrays are ubiquitous for representing numerical data. Like
lists, arrays are mutable and can represent collections of objects. Unlike
for lists, the elements of an array must all be of the same (typically numeric) type.
In this section, we learn how to create and manipulate basic arrays. Throughout
this book, we will assume that the NumPy package is loaded with the following
statement:

| import numpy as np

3.1.1 Creating Arrays

To construct a basic array (i.e., class np.ndarray), we often use the function
np.array (). Although many types of objects can be passed, a list will often do, as
follows:

| x = np.array([0.29, 0.55, -0.31, -0.84, 0.97])

The shape attribute of the np.ndarray object is an integer tuple representing
the size (i.e., length) of each of its dimensions. For instance, the shape of the
1-dimensional (1D) array of five elements given the name x above is printed with

1. The program typically reads a file stored in “secondary” (i.e., long-term) memory and loads it into
“main” memory, which is faster to access for calculations. Similarly, when a program writes to a file, it
stores data that is in main memory in secondary memory.

https://engineering-computing.ricopic.one/wa
https://engineering-computing.ricopic.one/wa

