
Numerical Analysis I: Representations, Input and Output, and Graphics 61

The statement np.any(np.isnan(a)) is a nice idiom for detecting if any nans
remain in the array. This is a good check that we have in fact replaced all elements
of the initialized array with numbers.
Array concatenation is the ordered collection of arrays. The np.concatenate()

function returns a concatenation of arrays given as a tuple to its first argument. For
instance,

a = np.array([[0, 1], [2, 3]]) # 2x2
b = np.array([[4, 5]]) # 1x2
np.concatenate((a, b)) # => [[0, 1], [2, 3], [4, 5]] (3x2)

The axis optional argument, 0 by default, determines the dimension alongwhich
the array concatenates. For instance, with the same a and b from above,

np.concatenate((a, b), axis=0) # => [[0, 1], [2, 3], [4, 5]] (3x2)
np.concatenate((a, b.T), axis=1) # => [[0, 1, 4], [2, 3, 5]] (2x3)

Here we have used the transpose array attribute, which returns a view of the array
with its axes swapped (see section 3.2.1). The arrays to be concatenated must have
matching dimensions except in the axis dimension.

Box 3.1 Further Reading

• NumPy Developers (2024c), for a basic and short introduction to NumPy

3.2 Manipulating, Operating On, and Mapping Over Arrays LINK
84

In this section, we learn to manipulate, operate on, and map over
NumPy arrays.

3.2.1 Array Manipulation Functions and Methods

NumPy has many powerful functions and methods for manipulating arrays. We
cover only those most frequently useful to us, here; for a full list and documentation,
see (NumPy Developers 2024a).

3.2.1.1 Sorting To sort an array, the np.sort(a) function returns a sorted copy
of a and the a.sort()method will sort (mutate) a itself. For instance,
a = np.array([6, -3, 0, 9, -6])
np.sort(a) # => [-6, -3, 0, 6, 9] (copy)
a.sort() # a: [-6, -3, 0, 6, 9]

The function and the method have the same optional arguments, the most useful
of which is axis: int, the axis along which to sort. The default is -1 (i.e., the last
dimension).

https://engineering-computing.ricopic.one/84
https://engineering-computing.ricopic.one/84

62 Chapter 3

3.2.1.2 Transposing The mathematical matrix transpose (i.e., swapping dimen-
sions by flipping the matrix along its diagonal) can be obtained for a Python matrix
via a few different techniques. The following three techniques neither mutate the
original matrix nor return transposed copies; rather, they return a transposed view
of the original matrix:

A = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) # 3x4
A.T # Transpose attribute (view)
A.transpose() # Transpose method (view)
np.transpose(A) # Transpose function (view)

All three transpose statements return a 4× 3 array view that prints as follows:

[[0, 4, 8],
[1, 5, 9],
[2, 6, 10],
[3, 7, 11]]

The original array A remains the same and is linked to the transposed view objects.
To get a transposed copy, append the copy()method to any of these statements.
Unlike for matrices, a vector transpose view is no different than the original

vector. However, a row vector (i.e., 2D array with first axis of length 1) or a column

vector (i.e., 2D array with second axis of length 1) can be created by adding an axis
to a vector. For instance,

a = np.array([0, 1, 2, 3]) # A vector
a.T # => [0, 1, 2, 3] (same vector view)
a[np.newaxis, :] # => [[0, 1, 2, 3]] (1x4 row vector view)
a[:, np.newaxis] # => [[0], [1], [2], [3]] (4x1 column vector view)

The following are the shapes of these objects:

• a.shape returns (4,) (i.e., a 1D array of size 4)
• a[np.newaxis, :].shape returns (1, 4) (i.e., a 2D view of shape 1× 4)
• a[:, np.newaxis].shape returns (4, 1) (i.e., a 2D view of shape 4× 1)
Constructing row and column vectors will be important for computing math-

ematical matrix-vector multiplication. They can also be properly transposed
back-and-forth between row and column vectors.

3.2.1.3 Reshaping Transposing, as we have seen, is one way to reshape an array.
Another way is to use the np.reshape(a: np.ndarray, newshape: tuple)
function or the equivalent method for array a, a.reshape(newshape: tuple).
Both return a view of the original array with its elements filling the newly shaped
array. The argument newshapemay be an int, in which case the array is flattened
1D array, or a tuple following the usual pattern of an array shape. The number of
elements in the new view must equal that of the original array. For instance,

Numerical Analysis I: Representations, Input and Output, and Graphics 63

A = np.array([[0, 1, 2], [3, 4, 5]]) # A 2x3 matrix
Ar = A.reshape((3,2)) # => [[0, 1], [2, 3], [4, 5]] (3x2 view)

This also provides a second way of forming a row or column vector view from a
1D array; for example,

a = np.array([0, 1, 2])
a_row = np.reshape((1, len(a))) # 1x3 row vector view
a_col = np.reshape((len(a), 1)) # 3x1 column vector view

3.2.2 Operations on Arrays and Broadcasting

The basic arithmetic operators +, −, ×, and / can be applied to NumPy arrays with
the operators +, -, *, and /, respectively. These operations are applied element-wise

as the following example demonstrates:

a = np.array([0, 1, 2])
b = np.array([3, 4, 5])
a + b # => [3, 4, 7]
a - b # => [-3, -3, -3]
a * b # => [0, 4, 10]
a / b # => [0, 0.25, 0.4]

3.2.2.1 Broadcasting In the cases above, the array shapes matched exactly. How-
ever, it is convenient to be able to perform these types of operations on arrays of
different size such that the smaller array dimensions are broadcast (i.e., stretched
or copied) to fill in the portions of the array it is missing. The simplest case is for an
operation between a 0D array (i.e., a scalar) and another array, as in the following
cases:

a = np.array([0, 1, 2])
a + 4 # = a + [4, 4, 4] => [4, 5, 6]
a - 4 # = a - [4, 4, 4] => [-4, -3, -2]
a * 4 # = a * [4, 4, 4] => [0, 4, 8]
a / 4 # = a / [4, 4, 4] => [0, 0.25, 0.5]

Here the scalar 4 was broadcast to match the (larger) a array with shape (3,) and
added element-wise.
Broadcasting is quite general and works for operations between arrays of many

dimensions. Dimensions of two arrays are compatible if they are of equal size or
if one has size 1, in which case it can be broadcast. The dimensions are compared
from last to first. If one array runs out of dimensions, the rest are treated as 1. Here
are some examples of compatible array dimensions in each column:

64 Chapter 3

3× 3 7× 1× 4 9× 7× 4
1× 3 4× 4 7× 1
3× 1 7× 4× 1 500× 1× 1× 4

4× 3× 1 1× 4 9× 1× 1

Operations on arrays with compatible dimensions will be broadcast automatically.
This is not only convenient, in most cases it is also much more efficient (in terms of
memory usage and computation time) than constructing the arrays or executing
loops.2 Therefore, we usually prefer broadcasting.

3.2.2.2 Matrix Multiplication Matrix multiplication can be performed with the
@ operator. For instance, consider the matrices and column vector

�=

0 1 2
3 4 5
6 7 8

 , �=

0 1
2 3
4 5

 , and x =

0
1
2

 .
Further consider the following matrix products:

��, �x , and �>�x.

The following code computes these products:

A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 3x3
B = np.array([[0, 1], [2, 3], [4, 5]]) # 3x2
x = np.array([[0], [1], [2]]) # 3x1
A @ B # => [[10, 13], [28, 40], [46, 67]] (3x2 matrix)
A @ x # => [[5], [14], [23]] (3x1 column vector)
B.T @ A @ x # => [[120], [162]] (2x1 column vector)

The @ operator is equivalent to the use of the np.matmul() function. A related
function is np.dot(a, b), which takes the dot product of a and b. If a and b are
matrices, this is equivalent to a @ b. However, in this case np.matmul() and a @ b
are preferred.

3.2.2.3 Other Matrix Operations We have considered matrix transposes and
multiplication. Other common mathematical matrix operations include addition,
subtraction, and scalar multiplication. These are element-wise operations, so we
can simply use NumPy’s usual +, -, and * operators, respectively.
The multiplicative inverse �−1 of a matrix � can be computed with the

np.linalg.inv() function from the linalgmodule. For example,

A = np.array([[1, 0, 0], [0, 2, 0], [0, 0, 4]]) # 3x3
np.linalg.inv(A) # => [[1., 0., 0.], [0., 0.5, 0.], [0., 0., 0.25]]

2. Loops are executed in broadcasting, but these are loops in the more-efficient C programming language
(in which Python is written), not in Python.

Numerical Analysis I: Representations, Input and Output, and Graphics 65

If the matrix is not invertible, the exception LinAlgError: Singular matrix is
raised.

3.2.2.4 Element-Wise Mathematical Functions NumPy has mathematical func-
tions that automatically operate element-wise on arrays. Trigonometric functions
include np.sin(), np.cos(), and np.tan(); exponential and logarithmic func-
tions include np.exp(), np.log(), and np.log10(); hyperbolic functions include
np.sinh(), np.cosh(), and np.tanh(); complex-number functions include
np.real(), np.imag(), and np.angle(); rounding functions include np.round(),
np.ceil(), and np.floor(). All these functions operate element-wise, as shown
in the following example:

x = np.linspace(0, 2*np.pi, 5)
np.round(np.sin(x), 10) # => [0., 1., 0., -1., -0.] (round to 10 dec.)
np.round(np.cos(x), 10) # => [1., 0., -1., -0., 1.] (round to 10 dec.)

This element-wise operation is not only convenient, it is highly optimized. NumPy
takes advantage of precompiled C functions for performing these operations, so
they execute much faster than would a Python loop through each element. The
element-wise operation is called vectorization (n.b., sometimes this is the term
given to the sometimes-attendant optimization), and NumPy takes great advantage
of this, which is one of its key features.

3.2.3 Mapping Over Arrays and Lambda Functions

As we have seen, NumPy includes many built-in functions that are vectorized (i.e.,
applied element-wise). Our own custom function and method definitions can (and
often should) also be vectorized. Usually, nothing special is required because we
can take advantage of NumPy’s built-in functions and broadcasting. For instance,
consider the following example, which defines a Python function corresponding to
G ↦→
√
G − 1:

def sqrt_m1(x: np.ndarray) -> np.ndaray:
return np.sqrt(x) - 1

Here np.sqrt(x) is already vectorized and the subtraction is automatically broad-
cast, so our sqrt_m1 is vectorized. Note that this will be much faster than a for
loop through the elements of x.
In general, the application of a function to each element of an array (or iterable)

object is calledmapping. In plain Python, we can apply a function f to each element
of a list lwith the built-in function map(f, l). This is effectively just a for loop,
which is not particularly performant. Vectorization in NumPy allows us to usually
avoid for loops or equivalent calls to map().

66 Chapter 3

3.2.3.1 Lambda Functions At times, it is convenient to write an anonymous

function, often called a lambda function, which is a function that need not be given
a name (although it can be). Mathematically, a lambda function can be expressed
as, for instance,

G ↦→ (G + 2)3.
The Python syntax for a corresponding lambda function is

lambda x: (x + 2) ** 3

A lambda function can be applied directy to an argument. For instance,

(lambda x: (x + 2) ** 3)(1) ## => 27

It can also be given a name, as in

f = lambda x: (x + 2) ** 3
f(1) # => 27

In some ways, this defeats the purpose of the lambda function. The PEP 8 style
guide discourages this use.
So when is a lambda function actually useful? One case is for applying a non-

vectorized function to a list. For instance,

l = [1, 2, 3]
list(map(lambda x: x ** 2, l)) # => [1, 4, 9]

However, in this and most cases where numerical computation, it is better to use
the vectorization of NumPy. In the case of a non-numerical function mapping over
a list of strings, the lambda function is a good choice, as in the following case:

l = ["foo", "bar", "baz"]
list(map(lambda s: s.capitalize(), l)) # => ["Foo", "Bar", "Baz"]

3.2.3.2 Conditional Functions There are some more complex custom functions
that are difficult to vectorize. An example is a function with conditions. Consider
the following function:

def square_positive(x):
if x > 0:

return x ** 2
else:

return x

This function can be applied to a single number x, but it cannot take an array
argument. One solution would be to write a for loop over the elements of x, but
this would be inefficient.

Numerical Analysis I: Representations, Input and Output, and Graphics 67

The function np.where(condition, a_true, a_false) returns an array cho-
sen from a_true and a_false based on the condition. Consider the following
version of square_positive():
def square_positive(x: np.ndarray) -> np.ndarray:

return np.where(x > 0, x ** 2, x)

This is vectorized so it can be applied to arrays and it is much more performant
than a for-loop solution.

Box 3.2 Further Reading

• NumPy Developers (2024b), for a thorough introduction to NumPy
• NumPyDevelopers (2024a), for theAPI reference that describesNumPy classes,
functions, and methods in detail

3.3 Input and Output LINK
J4

A program’s input and output refer to the the information provided
to a program fromwithout and the information the program produces.
We have already seen examples of Python programs’ output in the form of text
printed to a console. Thus far, our programs have had no input because they have
contained all the information they need.
In this section, we consider a few important types of Python input and output. In

section 3.4, graphical output will be introduced.

3.3.1 User Input

A user can interact directly with a Python program via the built-in function
input(prompt). The prompt argument is printed to the console and the user can
type in a response, finishing with the key. For instance, consider the following
program:

import fractions # Built-in module
response = input(# Solicit user input

"What are my chances? (Enter a fraction): " # Prompt
)
if float(fractions.Fraction(response)) > 0.:

print("So you're tellin' me there's a chance. YEAH!")

Running this program prints the following prompt:

What are my chances? (Enter a fraction): |

Suppose the user enters 1/1_000_000. This is read by the input function and
stored as a str in the variable response. A string can be cast to a fraction using

https://engineering-computing.ricopic.one/j4
https://engineering-computing.ricopic.one/j4

