
74 Chapter 3

3.4 Introducing Graphics LINK
SY

The graphical presentation of numerical data is perhaps the most
important output of an engineering computing program. We must
begin by understanding the purpose of graphics:

Graphics reveal data. (Tufte 2001; p. 13)

Data can, of course, be presented in other ways. Small sets of data are sometimes
best presented in table format. However, most data is best presented visually.
Good graphics require careful design. The following list characterizes some

aspects of a quality graphic (p. 13):

• It shows the data
• It draws the viewer to the data, not its presentation
• It presents the truth of the data with minimal distortion
• It presents lots of data in a small space
• It makes understandable large data sets
• It draws the viewer to compare pieces of the data set
• It presents the data in important levels of detail (broad and fine)
• It has a clear purpose: description, exploration, tabulation, or decoration
• It is closely integrated with accompanying descriptions of the data set
A good graphic is an explanation. For instance, it explains how one variable is

related to another. In some cases, a causal explanation is suggested, as in figure 3.2,
which suggests economic elites have much greater influence on policy adoption
than do average citizens.

20 40 60 80

Percent favoring proposed policy change

0

20

40

60
Percent predicted probability of adoption

Average Citizens

Economic Elites

Figure 3.2. Percent predicted probability of public policy adoption for economic elites
and average citizens. Study, results, and statistical model by Gilens and Page (2014).

https://engineering-computing.ricopic.one/sy
https://engineering-computing.ricopic.one/sy

Numerical Analysis I: Representations, Input and Output, and Graphics 75

A powerful Python package for creating graphics is Matplotlib (Hunter 2007). It
is included in the base Anaconda environment and its most important module can
be loaded with the following statement:

import matplotlib.pyplot as plt

In this book, we will use plt as the name for this module.
The rest of this section introduces the three fundamental types of graphics: func-

tion graphs, plots, and charts. Several important Matplotlib functions and methods
are presented for generating each fundamental type of graphic.

3.4.1 Function Graphs

A function graph is a graphic that displays the relationship between a function
and one or more of its arguments. A single 2D function graph can display the
relationship between a function and a single argument. For instance, consider the
polynomial function

5 (G)= 04G
4 + 03G

3 + 02G
2 + 01G + 00 ,

for real constant coefficients 00 , · · · , 04. To visualize the function for a given set of
coefficients,

00 , · · · , 04 = 10, 10,−20,−1, 1,

we could write a Python program that begins by defining the function 5 as a Python
function as follows:

def f(x):
a0, a1, a2, a3, a4 = 10, 10, -20, -1, 1
return a4 * x ** 4 + a3 * x ** 3 + a2 * x ** 2 + a1 * x + a0

Our strategy is to create two NumPy arrays, one for values of G and another for
corresponding values of H = 5 (G). These values should cover the domain of interest;
for instance,

x = np.linspace(-5, 5, 101)
y = f(x)

The following code will create a figure and an axis, plot x and y on the axis, set
the G-axis and H-axis labels, and display the figure:

fig, ax = plt.subplots() # Create a figure and an axis
ax.plot(x, y)
ax.set_xlabel("x") # Label the G axis
ax.set_ylabel("f(x)") # Label the H axis
plt.show() # Display the figure

Consider each of the lines and what it does:

76 Chapter 3

• fig, ax = plt.subplots() This function returns two objects with funda-
mental Matplotlib classes: the figure class matplotlib.figure.Figure and
the axes class matplotlib.axes.Axes. Figures are the top-level containers
for all elements in a Matplotlib graphic. Axes are the containers for individual
plots and subplots, multiple of which can be contained in a single figure.
• ax.plot(x, y) This axes method plots y versus x, drawing a continuous
curve connecting the points (G8 , H8). There are many optional arguments we
will later explore, but the defaults will suffice for this example.
• ax.set_xlabel("x") This axes method sets the G-axis label to the string
argument.
• ax.set_ylabel("f(x)") This sets the H-axis label.
• plt.show() This function displays all open figures. In an IPython session
(e.g., one in Spyder), this is superfluous because figures are automatically
displayed in this environment.

The execution of this code displays a figure similar to the stylized version shown
in figure 3.3.4 Note that although Matplotlib connects the individual points (G8 , H8)
on the curve with straight lines, with enough points the curve appears smooth.

−4 −2 0 2 4
G

−100

0

100

200
5 (G)

Figure 3.3. A graph of polynomial 5 (G).

AMatplotlib figure can contain multiple axes objects and each axes object can
contain multiple plots. We will explore the former in a later section and the latter in
section 3.4.2.

4.We will later explore how to style and save figures. The stylization of book figures will be minimal
but necessary to demonstate the aesthetic cohesion with the text for which we should strive.

Numerical Analysis I: Representations, Input and Output, and Graphics 77

3.4.2 Plots

Aplot is a graphic that displays discrete data in relation to one ormore coordinates in
a coordinate system. Consider a data set, a set of data points, =-tuples (G08 , · · · , G=8),
in a coordinate system (G0 , · · · , G=). A plot of the data set would display each of the
data points in the data set. For instance, a plot of a data set in a Cartesian coordinate
system (G, H)would display each of the data points (G8 , H8) in the data set.
You may have observed that to create a function graph in section 3.4.1 we gener-

ated a data set of Cartesian data points (G8 , H8) and actually created a plot of that
data set. It turns out that a function graph is really just a plot that tries to minimize
the appearance of individual data points to emphasize the continuously varying
nature of the function it is presenting. On the other hand, plots that are not function
graphs should usually emphasize its data points.
Experimental data are frequently presented in plots. For example, consider a data

set collected in an experiment exploring the relationship among the pressure %,
volume + , and temperature) of a noble gas. You may recall that noble gases are
good approximations of an ideal gas, which obeys the ideal gas law

%+ = ='),

where = is the (molar) amount of gas and ' is the ideal gas constant (approximately
8.314 J/(K·mol)). Our Engcom package datamodule simulates this data set; the
module can be imported with the following statement:

import engcom.data

A data set can be generated for values of volume V and temperature Twith the
following function call:

d = engcom.data.ideal_gas(
V=np.linspace(1, 2, 16), # (m^3) Volume values
T=np.linspace(273, 573, 4), # (K) Temperature values

)

Now d is a dictionary with the following key–value pairs:
• "volume"–+16×1 (m3)
• "temperature"–)1×4 (K)
• "pressure"–%16×4 (Pa)

We would like to plot % versus + for each of the 4 temperatures); that is,
plot a sequence of pairs (%8 , +8) for each)9 . The following code loops through
the temperatures and plots to the same axes object:

78 Chapter 3

fig, ax = plt.subplots()
for j, Tj in enumerate(d["temperature"].flatten()):

x = d["volume"] # (m^3)
y = d["pressure"][:,j] / 1e6 # (MPa)
ax.plot(x, y, marker="o", color="dodgerblue") # Circle markers
ax.text(x=x[-1], y=y[-1], s=f"$T = {Tj}$ K") # Label last point

Finally, we label the axes and display the figure with the following code:

ax.set_xlabel("Volume (m3)")
ax.set_ylabel("Pressure (MPa)")
plt.show()

The figure should appear as shown in figure 3.4.

1.0 1.2 1.4 1.6 1.8 2.0

Volume (m3)

0.4

0.6

0.8

1.0

1.2

Pressure (MPa)

) = 273.0 K

) = 373.0 K

) = 473.0 K
) = 573.0 K

Figure 3.4. Ideal gas pressure versus volume for different temperatures.

Note the practice of labeling the individual data plots instead of creating a separate
legend. At times a legend is necessary, but often it is better to simply label the data
so the viewer needn’t perform unnecessary work moving back-and-forth between
the legend and the plot.

Numerical Analysis I: Representations, Input and Output, and Graphics 79

3.4.3 Charts

The third fundamental type of graphic is the chart: a data set presentation in which
signs (i.e., icons, indices, and symbols)5 represent data. Some signs have become
commonplace for representing data:

• The dot • represents a data point
• The curve represents a continuously varying quantity or a connec-
tion between sequential data points
• The bar represents a quantity via its length

A function graph (section 3.4.1) represents a continuously varying quantity with
a curve. A plot (section 3.4.2) represents data points with dots and connections
among sequential data points with curves. The chart can use dots, curves, bars,
or any other sign to represent data. Therefore, “chart” is the most general term: a
function graph is a type of plot, which is a type of chart.
There aremany flavors of chart in addition to the function graph and plot. Perhaps

themost important are variations on the bar chart and the related histogram, covered
here.

3.4.3.1 Bar Charts A bar chart represents and compares quantities of some type
(e.g., density) for a collection of discrete categories (e.g., liquids). The categories
may have a natural progression, in which case they should be ordered accordingly;
otherwise, they should be ordered by quantity.
Consider the bar chart of thermal conductivity for various metals shown in

figure 3.5. The quantity charted is thermal conductivity and the categories are types
of metal. Note that not only can we easily see the conductivity of each metal, we
can easily compare conductivities in this graphic. A simple table of data would be
much less informative in this regard.

5. The field of semiotics (the study of signs) defines a sign as something that communicates a meaning.
Charles Sanders Peirce distinguished three types of signs in terms of a sign’s relation to its object: an
icon has a topographical similarity with its object (e.g., ☽ is an icon representing a waxing moon), an
index indicates something else (e.g., ↑ points to something), and a symbol is a sign for an object only by
convention (e.g., ☣ is the biohazard symbol). The type of a given sign can be ambiguous (e.g., ☜ is an
icon insofar as its object is a hand, but is an index insofar as it indicates the direction left).

80 Chapter 3

0 50 100 150 200 250 300 350 400

Inconel
Antimony
Constantan

Steel, stainless
Monel

Uranium
Lead

Steel, mild
Iron, cast

Chromium
Platinum

Tin
Cobalt

Iron, pure
Cadmium

Nickel
Brass (60/40)

Zinc
Molybdenum
Magnesium
Tungsten

Aluminium
Gold

Copper
Silver

Thermal conductivity (W/(m·K))

Figure 3.5. A bar chart of thermal conductivity for metals (data from Carvill (1994)).

We can produce the bar chart of figure 3.5 as follows. Begin by loading packages:

import numpy as np
import matplotlib.pyplot as plt
import engcom.data

The data can be loaded from the engcom.datamodule as follows:

d = engcom.data.thermal_conductivity(category="Metals", paired=False)
y = np.arange(len(d["labels"]))
x_alpha = d["conductivity"] # Alphabetically sorted
labels_alpha = np.array(d["labels"]) # Alphabetically sorted

The data is here sorted alphabetically. However, we prefer to sort it by quantity,
which can be achieved with the use of the np.lexsort() function as follows:

Numerical Analysis I: Representations, Input and Output, and Graphics 81

ix = np.lexsort((labels_alpha, x_alpha)) # Sort indices
x = x_alpha[ix]
labels = labels_alpha[ix].tolist()

Now we can use Matplotlib’s ax.barh() axes method (for a vertical bar chart,
use ax.bar()) as follows:
fig, ax = plt.subplots()
ax.barh(y, x, color="dodgerblue")
ax.set_yticks(y, labels=labels)
ax.set_xlabel("Thermal conductivity (W/(m$\\cdot$K))")

In some cases we present a group of subcategories for each category, in which
case a tuple of subcategories can be passed to ax.barh() or ax.bar().
There are other ways to present this type of information (i.e., quantities for a

collection of categories), but it is difficult to do better than the bar chart.

3.4.3.2 Histograms A histogram is a chart that presents a distribution of a vari-
able. Its use of bars makes it closely related to the bar chart, but it represents the
frequency a variable falls in each bin: an interval of values treated as a category.
Consider the histogram of my movie ratings on a 0–10 scale shown in figure 3.6.

Ratings most frequently fall in the [6, 7) bin. Only two movies are in the [9, 10] bin.
With the histogram we can easily compare the relative frequencies of values.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
Frequency

Figure 3.6. A histogram of my movie ratings on a 0–10 scale.

82 Chapter 3

We can produce the histogram chart of figure 3.6 as follows. After loading
the same packages as we did for the bar chart, the data can be loaded from the
engcom.datamodule as follows:

d = engcom.data.movie_ratings_binned()
x = list(range(0,len(d["rating_freq"])))

Now we can use Matplotlib’s ax.bar() axes method (for a horizontal histogram,
use ax.barh()) as follows:
fig, ax = plt.subplots()
ax.bar(x, d["rating_freq"], color="dodgerblue", width=.9)
ax.set_xticks(x)
ax.set_xticklabels(d["labels"])
ax.set_xlabel("Rating out of 10")
ax.set_ylabel("Frequency")

Note that Matplotlib does have a hist() function that can make generating
histograms slightly easier. However, we prefer the flexibility of the bar()method.

3.4.3.3 Other Types of Charts

Numerical Analysis I: Representations, Input and Output, and Graphics 83

3.5 Problems LINK
A5

Problem 3.1 LINKJ3 Write a program that meets the following requirements:

a. It constructs a NumPy matrix A to represent the following mathematical
matrix:

�=

[
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

]
.

b. It defines a function left_up_sum(A: np.ndarray) -> np.ndarray that
adds the component (element) to the left and the component above (wrap-
ping, if necessary) to each component. The function should pass through
the array once, row-by-row, and return a new array. The function should be
able to handle any size of matrix.

c. It defines a function left_up_sums(A: np.ndarray, n: int) -> np.ndarray
that executes left_up_sum() n times and returns a new array.

d. It calls left_up_sums() on A and prints the returned array for the following
values of n: 0, 1, 4.

Problem 3.2 LINKZF The inner product of two real =-vectors x and y is defined as

〈x , y〉 =
=−1∑
8=0

G8H8 .

The result is a scalar. The np.inner() and np.dot() functions can be used in
NumPy to find the inner product of two vectors of the same size. In this problem,
we will write our own function that computes the real inner product even if they
are of different sizes. Write a program that meets the following requirements:

a. It defines a function

inner_flat_trunc(x: np.ndarray, y: np.ndarray) -> float

that returns the truncated inner product of vectors a and b even if the sizes
of the vectors do not match by using a truncated version of the one that is
too long. The function should handle any shape of input arrays by using
the flatten() method before truncating and taking the inner product.
If both input arrays do not have dtype attribute np.dtype('float') or
np.dtype('int'), the function should raise a TypeError exception.

b. It calls inner_flat_trunc() on the following arrays:
i. A pair of arrays from the lists:

[-1.1, 3, 2.9, -1, -9.2, 0.1] and [1.3, 0.2, 8.3]

https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/j3
https://engineering-computing.ricopic.one/zf

