
Numerical Analysis I: Representations, Input and Output, and Graphics 83

3.5 Problems LINK
A5

Problem 3.1 LINKJ3 Write a program that meets the following requirements:

a. It constructs a NumPy matrix A to represent the following mathematical
matrix:

�=

[
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

]
.

b. It defines a function left_up_sum(A: np.ndarray) -> np.ndarray that
adds the component (element) to the left and the component above (wrap-
ping, if necessary) to each component. The function should pass through
the array once, row-by-row, and return a new array. The function should be
able to handle any size of matrix.

c. It defines a function left_up_sums(A: np.ndarray, n: int) -> np.ndarray
that executes left_up_sum() n times and returns a new array.

d. It calls left_up_sums() on A and prints the returned array for the following
values of n: 0, 1, 4.

Problem 3.2 LINKZF The inner product of two real =-vectors x and y is defined as

〈x , y〉 =
=−1∑
8=0

G8H8 .

The result is a scalar. The np.inner() and np.dot() functions can be used in
NumPy to find the inner product of two vectors of the same size. In this problem,
we will write our own function that computes the real inner product even if they
are of different sizes. Write a program that meets the following requirements:

a. It defines a function

inner_flat_trunc(x: np.ndarray, y: np.ndarray) -> float

that returns the truncated inner product of vectors a and b even if the sizes
of the vectors do not match by using a truncated version of the one that is
too long. The function should handle any shape of input arrays by using
the flatten() method before truncating and taking the inner product.
If both input arrays do not have dtype attribute np.dtype('float') or
np.dtype('int'), the function should raise a TypeError exception.

b. It calls inner_flat_trunc() on the following arrays:
i. A pair of arrays from the lists:

[-1.1, 3, 2.9, -1, -9.2, 0.1] and [1.3, 0.2, 8.3]

https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/j3
https://engineering-computing.ricopic.one/zf

84 Chapter 3

ii. An array of the integers from 0 through 13 and an array of the integers
from 3 through 12

iii. An array of 21 linearly spaced elements from 0 through 10 and an
array of 11 linearly spaced elements from 5 through 25.

iv. A pair of arrays of elements from the lists [True, False, True]
and [0, 1, 2] (handle the exception in the main script so it runs
without raising the exception)

Problem 3.3 LINK3H Consider the following mathematical matrices and vectors:

�=


2 1 9 0
0 −1 −2 3
−3 0 8 −4

 �=


0 9 −1
1 0 3
0 −1 1

 x =


1
0
−1

 y=
[
3 0 −1

]
. (3.1)

Write a program that meets the following requirements:

a. It defines NumPy arrays to represent �, �, (column vector) x, and (row
vector) y.

b. It computes and prints the following quantities:

i. ��

ii. �>�− 6�4×3, where �4×3 is the 4× 3 matrix of all 1 components
iii. �x + y>
iv. xy+ �
v. yx
vi. y�−1x
vii. ��, where � is the 3× 3 submatrix of the first three columns of �

Problem 3.4 LINKDI Consider the array:

a = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) # 4x3

Write a program that performs and prints the results of the following operations on
a without using for loops:
a. Adds 1 to all elements
b. Adds 1 to the last column
c. Flattens a to a vector
d. Reshapes a into a 3× 4 matrix
e. Adds the vector [1, 2, 3] to each row
f. Adds the vector [1, 2, 3, 4] to each column
g. Reshapes a to a column vector
h. Reshapes a to a row vector

Problem 3.5 LINKQX Write vectorized Python functions that operate element-wise
on array arguments for the following mathematical functions:

https://engineering-computing.ricopic.one/3h
https://engineering-computing.ricopic.one/di
https://engineering-computing.ricopic.one/qx

Numerical Analysis I: Representations, Input and Output, and Graphics 85

a. 5 (G)= G2 + 3G + 9
b. 6(G)= 1+ sin2 G

c. ℎ(G, H)= 4−3G + ln H
d. �(G, H)= bG/H

⌋
e. �(G, H)=

{
G2 + H2 if G > H

2G otherwise

Problem 3.6 LINKDN Write a program that graphs each of the following functions
over the specified domain:

a. 5 (G)= tanh(4 sin G) for G ∈ [−5, 8]
b. 6(G)= sin

√
G for G ∈ [0, 100]

c. ℎ(G)=
{

0 if G < 0

4−G sin(2�G) otherwise
for G ∈ [−2, 6]

Problem 3.7 LINKWF Write a program that loads and plots ideal gas data with the
engcom.data.ideal_gas() function in the following way:
a. The data it loads is over the volume domain: + ∈ [0.1, 2.1]m3

b. The data it loads has 3 temperatures: + = 300, 400, 500 K
c. It plots in a single graphic % versus + for each of the three temperatures
d. Each data point should be marked with a dot •
e. Sequential data points should be connected by straight lines
f. Each plot should be labeled with its corresponding temperature, either next

to the plot or in a legend

Problem 3.8 LINKY1 Use the data from problem 3.7 to write a program that meets
the following requirements:

a. It loads the pressure-volume-temperature data from problem 3.7.
b. It estimates the work , done by the gas for each of the three values of

temperatures via the integral equation

, =−
∫ 2.1

0.1
%(+) 3+.

Note: An integral can be estimated from discrete data via the trapezoidal
rule, which can be executed with NumPy’s np.trapz() function.

c. It generates a bar chart comparing the three values of work (one for each
temperature).

Problem 3.9 LINKKG Write a program to bin data and create histogram charts that
meets the following requirements:

a. It defines a function

https://engineering-computing.ricopic.one/dn
https://engineering-computing.ricopic.one/wf
https://engineering-computing.ricopic.one/y1
https://engineering-computing.ricopic.one/kg

86 Chapter 3

binner(A: np.ndarray, nbins: int) -> (np.ndarray, np.ndarray)

that accepts an array A of data and returns an array for the frequency of the
data in each bin and an array of the bin edges. Consider the following details:

i. The bin edges should include the left edge and not the right edge,
except the rightmost, which should include the right edge (“left” and
“right” here mean lesser and greater).

ii. The bins should be of equal width.
iii. Give a default value (e.g., 10) for the nbins argument.
iv. Do not use the (nice) functions np.histogram() or plt.hist() for

this exercise.

b. It defines a function histogram(A: np.ndarray, nbins: int) that calls
binner() and plt.bar() to generate a histogram chart.

c. It loads all of the thermal conductivity data from the engcom.datamodule
with the engcom.data.thermal_conductivity() function.

d. It generates 3 histograms, one for each of the following material categories
(key): "Metals", "Liquids", and "Gases". Be sure to properly label the
axes.

Problem 3.10 LINKWJ You will now create life. John Conway’s Game of Life is a
cellular automata game that explores the notion of life. In this problem, you will
write a program for the game, which is played on a 2D grid. The grid is composed
of elements called cells, each of which can be either alive or dead at a given moment.
The rules of the game are simple (Johnston and Greene 2022):

• If a cell is alive, it survives to the next generation if it has 2 or 3 live neighbors;
otherwise it dies.
• If a cell is dead, it comes to life in the next generation if it has exactly 3 live
neighbors; otherwise it stays dead.

The neighbors of a cell are those eight cells adjacent to it (including diagonals).
Write a program for playing the game of life that meets the following require-

ments:

a. It defines a function

game_of_life(A: np.ndarray)

that accepts a matrix A that encodes the starting state for the game. Use 1
to signify an alive cell and 0 to signify a dead cell. Consider the following
details:

i. The game is traditionally played on an infinite grid. However, your
program should play the game of life on a torus (doughnut) made
from sewing the opposite edges of the starting state A grid. For

https://engineering-computing.ricopic.one/wj

Numerical Analysis I: Representations, Input and Output, and Graphics 87

instance, the neighbors above a cell in the top row are on the bottom
row (i.e., neighbors wrap).

ii. A visualization is required. A very useful Matplotlib function here is
plt.matshow(A), whichwill display the numerical values of amatrix
in a grid. For instance, try the following:

plt.matshow([[0,1,1],[1,0,1],[0,0,1]])

iii. Strongly consider using additional functions to define operations like
“evolve one generation,” “kill,” “animate,” and “visualize.”

b. It calls game_of_life() on matrices corresponding to the following starting
states:

i. A 5× 5 grid of cells with the following pattern (blinker):
0 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0


ii. A 20× 20 grid of cells, all dead (0) except a group near the center with

the following pattern (glider):
0 1 0
0 0 1
1 1 1


iii. A 40× 40 grid of cells, all dead (0) except a group near the center with

the pattern that can be loaded as a list from the engcom.datamodule
with the function call
engcom.data.game_of_life_starts("gosper_glider")

Problem 3.11 LINKR9 In robotic path planning, it is often important to know if a
given point (e.g., a potential location of the robot) is inside of a given polygon (e.g.,
a shape representing an obstacle). On a plane, a polygon can be defined by a list
of = points (G8 , H8) representing the vertices of the polygon %. One algorithm for
determining if a given point ' is in % is called the winding number algorithm,
which computes the winding number $ as the sum of the angles �8 between the
vectors from ' to consecutive vertices %8 and %8+1 of the polygon, denoted r8 and
r8+1, as shown in figure 3.7. In other words,

$=
1

2�

=−1∑
8=0

�8 . (3.2)

https://engineering-computing.ricopic.one/r9

88 Chapter 3

%8

%8+1

r8

r8+1

�8

'

Figure 3.7. A polygon and vectors from ' to two consecutive vertices.

It can be shown that if the winding number is 0, then ' is outside the polygon;
otherwise, it is inside. The angle)8 of vector r8 = [A8G , A8H] is

)8 = arctan(A8H/A8G),
where we should use np.atan2(riy, rix) for computation. The difference
between the angles of two consecutive vectors is

�8 =)8+1 −)8 where |�8 ≤ �|.
The bound |�8 ≤ �|must be enforced because the acute angle is used in equation (3.2),
so if)8+1 −)8 <−�, we should add 2� and if)8+1 −)8 >�, we should subtract 2�.
Write a program that meets the following requirements:

a. It defines a Polygon class that is constructed with instance attribute
vertices, a list of (G8 , H8) coordinate tuples defining the vertices of the
polygon.

b. The Polygon class has a method plot() that plots the polygon as a closed
curve. If a point R is passed to the plot() method, it should appear as a
single point on the plot.

c. The Polygon class has a method is_inside(R) that checks if the point
R (a tuple) is inside the polygon using a winding number algorithm. The
method should return True if R is inside the polygon and False otherwise.
Additional methods can be added to help with the computation of angles
and other intermediate quantities.

Numerical Analysis I: Representations, Input and Output, and Graphics 89

d. It tests the Polygon class with the following polygons and points, testing if
the points are inside the polygon and plotting the polygon with the points:

i. % = [(5, 1), (2, 3), (−2, 3.5), (−4, 1), (−2, 1.5), (−2,−2), (−5,−3), (2,−2.5),
(5.5,−1)] and the points '1 = (0, 0) and '2 = (−4, 0)

ii. % = [(4, 1), (1, 2), (−1, 1), (−4, 2), (−5,−2), (−3,−2), (−5,−3), (2,−2),
(5,−2)] and the points '1 = (0, 0) and '2 = (−4, 0)

Restriction: Use only the NumPy and Matplotlib packages.

4 Symbolic Analysis LINK
WE

A symbolic analysis, sometimes called “analytic” as opposed to “numerical,” is one
that manipulates symbols called symbolic variables, which represent quantities. In
symbolic analysis, variables of interest are solved for by means of techniques from
all branches of mathematics. For engineering symbolic analysis, of particular impor-
tance are the mathematical techniques of geometry, algebra, calculus, analysis,1

discrete mathematics, logic, set theory, probability, and statistics.
Applied to an engineering problem, the techniques of these branches of math-

ematics often yield symbolic solutions (also called “analytic” solutions), exact
solutions for symbolic variables. However, there are many problems for which
symbolic solutions do not exist, are unknown, are difficult to obtain, or would
yield little insight into the problem (e.g., when the solution cannot be expressed
simply). In such cases, the techniques of numerical analysis (chapter 5) are indicated.
For those problems with nice symbolic solutions (i.e., those that can be expressed
simply and can be obtained without exorbitant work), there are distinct advantages
to finding symbolic solutions:

1. Symbolic solutions have provable properties (e.g., stability and bounds)
2. Symbolic solutions give designers insight into the ways design parameters

affect performance (e.g., increasing the mass of this component will reduce a
vibration output)

3. Symbolic solutions are much more general than numerical solutions, which
are only valid for a specific set of parameters, initial conditions, boundary
conditions, etc.

Computers have the ability to manipulate symbolic variables and the expressions
and functions associated with them. Software designed for this purpose is called a
computer algebra system (CAS). Many of the techniques from the mathematics
curriculum of an engineering degree are available in CASs. Popular CASs include

1. The mathematical field of analysis includes real analysis, complex analysis, differential equations, and
vector analysis. Analysis developed from calculus.

https://engineering-computing.ricopic.one/we
https://engineering-computing.ricopic.one/we

92 Chapter 4

Mathematica, Maple, the Symbolic Math Toolbox of MATLAB, SageMath, and the
SymPy package of Python. Although most of these have an application program-
ming interface (API) for Python, the only one that is exclusively written in and for
Python is the SymPy package, and therefore we will use this as our CAS.
The SymPy package is available in the base Anaconda environment. It can be

imported in a program with the following statement:

import sympy as sp

We use the alias sp throughout the text.

4.1 Symbolic Expressions, Variables, and Functions LINK
YA

In SymPy, a symbolic expression is comprised of SymPy objects.
Unlike numerical expressions, these are not automatically evaluated
to integer or floating-point numbers. For instance, using the standard library math
module, the expression math.sqrt(3)/2 immediately evaulates to the floating-
point approximation of about 0.866. However, in SymPy, something else happens:2

sp.sqrt(3) / 2
√

3
2

This is an exact representation of the mathematical expression, as opposed to the
approximation obtained previously.
A symbolic expression can be represented as an expression tree:

sp.srepr(sp.sqrt(3) / 2) # Show expression tree representation

'Mul(Rational(1, 2), Pow(Integer(3), Rational(1, 2)))'

This can be visualized as a tree graph like that shown in figure 4.1.

2.We are pretty printing results that are mathematical expressions.

https://engineering-computing.ricopic.one/ya
https://engineering-computing.ricopic.one/ya

