
92 Chapter 4

Mathematica, Maple, the Symbolic Math Toolbox of MATLAB, SageMath, and the
SymPy package of Python. Although most of these have an application program-
ming interface (API) for Python, the only one that is exclusively written in and for
Python is the SymPy package, and therefore we will use this as our CAS.
The SymPy package is available in the base Anaconda environment. It can be

imported in a program with the following statement:

import sympy as sp

We use the alias sp throughout the text.

4.1 Symbolic Expressions, Variables, and Functions LINK
YA

In SymPy, a symbolic expression is comprised of SymPy objects.
Unlike numerical expressions, these are not automatically evaluated
to integer or floating-point numbers. For instance, using the standard library math
module, the expression math.sqrt(3)/2 immediately evaulates to the floating-
point approximation of about 0.866. However, in SymPy, something else happens:2

sp.sqrt(3) / 2
√

3
2

This is an exact representation of the mathematical expression, as opposed to the
approximation obtained previously.
A symbolic expression can be represented as an expression tree:

sp.srepr(sp.sqrt(3) / 2) # Show expression tree representation

'Mul(Rational(1, 2), Pow(Integer(3), Rational(1, 2)))'

This can be visualized as a tree graph like that shown in figure 4.1.

2.We are pretty printing results that are mathematical expressions.

https://engineering-computing.ricopic.one/ya
https://engineering-computing.ricopic.one/ya

Symbolic Analysis 93

Mul

Rational

1 2

Pow

3 Rational

1 2

Figure 4.1. A symbolic expression tree for sp.sqrt(3)/2.

4.1.1 Symbolic Variables

Mathematical variables can be represented as symbolic variables that stand in for
an unspecified number. In SymPy, symbolic variables can be created as follows:

x, y = sp.symbols("x, y", real=True) # Create two real variables

The string passed to sp.symbols() can separate variables with commas and/or
whitespace. The type of unspecified number being represented by the symbolic
variables listed is assumed to be complex unless an optional argument is passed
declaring otherwise. Here we have declared that x and y are real with the predicate
real. Other common predicates include the following:
• Integers: integer, noninteger, even, and odd
• Real numbers: real, positive, nonnegative, nonzero, nonpositive, and
negative
• Complex numbers: complex (default) and imaginary
The predicate of a symbolic variable determines the assumptions SymPy will

make about it when it appears in a symbolic expression. For instance, consider the
following symbolic expressions:

z = sp.symbols("z") # Complex
p = sp.symbols("p", positive=True)
sp.sqrt(z**2)
sp.sqrt(x**2) # Using real x from above
sp.sqrt(p**2)
√
I2

|G |
?

94 Chapter 4

We see that the expression automatically simplifies based on the predicates provided
for each variable. This will prove especially useful once we begin using the symbolic
expression manipulation techniques described in the following sections.

4.1.2 Symbolic Functions

A mathematical function can be represented in SymPy by a symbolic function.
There are a few different ways to create these, andwewill consider only the simplest
and most common cases here. An undefined function 5 that should be treated as
monolithic and as having no special properties can be defined as follows:

f = sp.Function("f") # Type: sp.core.function.UndefinedFunction
f(x) + 3 * f(x) # Using x from above

4 5 (G)
Predicates can be applied to functions, as well; for instance,

g = sp.Function("g", real=True)
f(x) + g(x, y) * g(3, -3)

5 (G) + 6(3,−3)6(G, H)
An applied undefined function is an undefined function that has been given an

argument. For instance,

h = sp.Function("h")(x) # Types: h, sp.core.function.AppliedUndef
3 * h ## Leave off the argument

3ℎ(G)
Undefined functions are never evaluated. At times we want to define a function

that is always to be evaluated; in SymPy such a function is called a fully evaluated
function. A fully evaluated function can be created as a regular Python function, as
in the following case:

def F(x):
return x**2 - 4

F(x)**2(
G2 − 4

)2

For piecewise functions, regular Python functions with if statements will work,
but it is preferable to use the sp.Piecewise() function. For instance,

G = sp.Piecewise(
(x**2, x <= 0), # G2 for G ≤ 0
(3*x, True) # 3G for G > 0

)

Many common mathematical functions are built in to SymPy, including those
shown in table 4.1.

Symbolic Analysis 95

Table 4.1: Elementary mathematical functions in SymPy.

Kind SymPy Functions (sp. prefix suppressed)

Complex Abs(), arg(), conjugate(), im(), re(), sign()
Trigonmetric sin(), cos(), tan(), sec(), csc(), cot()
Inverse Trigonometric asin(), acos(), atan(), atan2(), asec(), acsc(), acot()
Hyperbolic sinh(), cosh(), tanh(), coth(), sech(), csch()
Inverse Hyperbolic asinh(), acosh(), atanh(), acoth(), asech()
Integer ceiling(), floor(), frac() get_integer_part()
Exponential exp(), log()
Miscellaneous Min(), Max(), root(), sqrt()

In rare cases, we must define a custom function; that is, a subclass of the
sp.Function class. Such a function needs to have its behavior thoroughly defined.
Once it is completed, it should behave just as built-in functions like sp.sin(). For
a tutorial on writing custom functions, see SymPy Development Team (2023d).

4.2 Manipulating Symbolic Expressions LINK
NC

In engineering symbolic analysis, the need to manipulate, often alge-
braically, mathematical expressions arises constantly. SymPy has
several powerful tools for manipulating symbolic expressions, the most useful
of which we will consider here.

4.2.1 The simplify() Function and Method

A built-in Sympy function and method, sp.simplify(), is a common SymPy
tool for manipulation because simplification is often what we want. Recall that
some basic simplification occurs automatically; however, in many cases this auto-
matic simplification is insufficient. Applying sp.simplify() typically results in
an expression as simple as or simpler than its input; however, the precise meaning
of “simpler” is quite vague, which can lead to frustrating cases in which a version
of an expression we consider to be simpler is not chosen by the sp.simplify()
algorithm. In such cases, we will often use the more manual techniques considered
later in this section.
The predicates (i.e., assumptions) used to define the symbolic variables and

functions that appear in a symbolic expression are respected by sp.simplify().
Consider the following example:

x = sp.symbols("x", real=True)
e0 = (x**2 + 2*x + 3*x)/(x**2 + 2*x); e0 # For display
e0.simplify() # Returns simplified expression, leaves e0 unchanged

G2 + 5G
G2 + 2G

https://engineering-computing.ricopic.one/nc
https://engineering-computing.ricopic.one/nc

