
Symbolic Analysis 95

Table 4.1: Elementary mathematical functions in SymPy.

Kind SymPy Functions (sp. prefix suppressed)

Complex Abs(), arg(), conjugate(), im(), re(), sign()
Trigonmetric sin(), cos(), tan(), sec(), csc(), cot()
Inverse Trigonometric asin(), acos(), atan(), atan2(), asec(), acsc(), acot()
Hyperbolic sinh(), cosh(), tanh(), coth(), sech(), csch()
Inverse Hyperbolic asinh(), acosh(), atanh(), acoth(), asech()
Integer ceiling(), floor(), frac() get_integer_part()
Exponential exp(), log()
Miscellaneous Min(), Max(), root(), sqrt()

In rare cases, we must define a custom function; that is, a subclass of the
sp.Function class. Such a function needs to have its behavior thoroughly defined.
Once it is completed, it should behave just as built-in functions like sp.sin(). For
a tutorial on writing custom functions, see SymPy Development Team (2023d).

4.2 Manipulating Symbolic Expressions LINK
NC

In engineering symbolic analysis, the need to manipulate, often alge-
braically, mathematical expressions arises constantly. SymPy has
several powerful tools for manipulating symbolic expressions, the most useful
of which we will consider here.

4.2.1 The simplify() Function and Method

A built-in Sympy function and method, sp.simplify(), is a common SymPy
tool for manipulation because simplification is often what we want. Recall that
some basic simplification occurs automatically; however, in many cases this auto-
matic simplification is insufficient. Applying sp.simplify() typically results in
an expression as simple as or simpler than its input; however, the precise meaning
of “simpler” is quite vague, which can lead to frustrating cases in which a version
of an expression we consider to be simpler is not chosen by the sp.simplify()
algorithm. In such cases, we will often use the more manual techniques considered
later in this section.
The predicates (i.e., assumptions) used to define the symbolic variables and

functions that appear in a symbolic expression are respected by sp.simplify().
Consider the following example:

x = sp.symbols("x", real=True)
e0 = (x**2 + 2*x + 3*x)/(x**2 + 2*x); e0 # For display
e0.simplify() # Returns simplified expression, leaves e0 unchanged

G2 + 5G
G2 + 2G

https://engineering-computing.ricopic.one/nc
https://engineering-computing.ricopic.one/nc

96 Chapter 4

G + 5
G + 2

Note that e0was slightly simplified automatically. The simplify()method further
simplified by canceling an x. The use of the method does not affect the object, so it
the same as the use of the function.
There are a few “knobs” to turn in the form of optional arguments to

sp.simplify():
• measure (default: sp.count_ops()): A function that serves as a heuristic
complexity metric. The default sp.count_ops() counts the operations in the
expression.
• ratio (default: 1.7): The maximum ratio of the measures, output out over
input inp, measure(out)/measure(inp). Anything over 1 allows the output
to be potentially more complex than the input, but it may still be simpler
because the metric is just a heuristic.
• rational (default: False): By default (False), floating-point numbers are
left alone. If rational=True, floating-point numbers are recast as rational
numbers. If rational=None, floating-point numbers are recast as rational
numbers during simplification, but recast to floating-point numbers in the
result.
• inverse (default: False): If True, allows inverse functions to be cancelled
in any order without knowing if the inner argument falls in the domain for
which the inverse holds.3 For instance, this allows arccos(cos G)→ G without
knowing if G ∈ [0,�].
• force (default: False): If True, predicates (assumptions) of the variables will
be ignored.

4.2.2 Polynomial and Rational Expression Manipulation

Here we consider a few SymPy functions andmethods that manipulate polynomials
and rational expressions.

4.2.2.1 The expand() Function andMethod The expand() function andmethod
expresses a polynomial in the canonical form of a sum of monomials. A monomial
is a polynomial with exactly one additive term. For instance,

sp.expand((x + 3)**2) ## Using the real x from above

G2 + 6G + 9

3. The usual way of defining the inverse H = arccos G is to retrict H in G = cos H to [0,�]. This is because
cos is not one-to-one (e.g., cos 0= cos 2�= 1), so its domain must be restricted for a proper inverse to
exist. The conventional choice of domain restriction to [0,�] is called the selection of a principal branch.

Symbolic Analysis 97

We can also expand a numerator or denominator without expanding the entire
expression, as follows for (G + 3)2/(G − 2)2:
frac = (x + 3)**2/(x - 2)**2
frac.expand()
frac.expand(numer=True)
frac.expand(denom=True)
frac.expand(numer=True).expand(denom=True)

G2

G2 − 4G + 4
+ 6G
G2 − 4G + 4

+ 9
G2 − 4G + 4

G2 + 6G + 9

(G − 2)2

(G + 3)2

G2 − 4G + 4
G2 + 6G + 9
G2 − 4G + 4

There are several additional options for expand(), including:
• mul (default: True): If True, distributes multiplication over addition (e.g.,

5(G + 1)→ 5G + 5.
• multinomial (default: True): If True, expands multinomial (polynomial that
is not a monomial) terms into sums of monomials (e.g., (G + H)2→ G2 + 2GH +
H2).
• power_exp (default: True): If True, expands sums in exponents to products
of exponentials (e.g., 43+G→ 434G).
• log (default: True): If True, split log products into sums and extract log
exponents to multiplicative constants (e.g., for G, H > 0, ln(G3H)→ 3 ln G + ln H).
• deep (default: True): If True, expands all levels of the expression tree; if False,
expands only the top level (e.g., G(G + (H + 1)2)→ G2 + G(H + 1)2).
• complex (default: False): If True, collect real and imaginary parts (e.g., G +
H→<(G) +<(H) + 9(=(G) +=(H))).
• func (default: False): If True, expand nonpolynomial functions (e.g., for the
gamma function Γ, Γ(G + 2)→ G2Γ(G) + GΓ(G)).
• trig (default: False): If True, expand trigonometric functions (e.g., sin(G +
H)→ sin G cos H − sin H cos G).

4.2.2.2 The factor() Function andMethod The factor() function andmethod
returns a factorization into irreducibles factors. For polynomials, this is the reverse
of expand(). Irreducibility of the factors is guaranteed for polynomials. Consider
the following polynomial example:

98 Chapter 4

x, y = sp.symbols("x, y", real=True)
e0 = (x + 1)**2 * (x**2 + 2*x*y + y**2); e0
e0.expand()
e0.expand().factor()

(G + 1)2
(
G2 + 2GH + H2)

G4 + 2G3H + 2G3 + G2H2 + 4G2H + G2 + 2GH2 + 2GH + H2

(G + 1)2 (G + H)2

Factorization can also be performed over nonpolynomial expressions, as in the
following example:

e1 = sp.sin(x) * (sp.cos(x) + sp.sin(x))**2; e1 # Using above real x
e1.expand()
e1.expand().factor()

(sin (G) + cos (G))2 sin (G)
sin3 (G) + 2 sin2 (G) cos (G) + sin (G) cos2 (G)
(sin (G) + cos (G))2 sin (G)

There are two options of note:

• deep (default: False): If True, inner expression tree elements will also be
factored (e.g., exp(G2 + 4G + 4)→ exp((G + 2)2)).
• fraction (default: True): If True, rational expressions will be combined.

An example of the latter option is given here:

e2 = x - 5*sp.exp(3 - x); e2 # Using real x from above
e2.factor(deep=True)
e2.factor(deep=True, fraction=False)

G − 543−G(
G4G − 543) 4−G
G − 5434−G

4.2.2.3 The collect() Function and Method The collect() function and
method returns an expression with specific terms collected. For instance,

x, y, a, b = sp.symbols("x, y, a, b", real=True)
e3 = a * x + b * x * y + a**2 * x**2 + 3 * y**2 + x * y + 8; e3
e3.collect(x)

02G2 + 0G + 1GH + GH + 3H2 + 8

02G2 + G (0 + 1H + H) + 3H2 + 8

More complicated expressions can be collected as well, as in the following
example:

e4 = a*sp.cos(4*x) + b*sp.cos(4*x) + b*sp.cos(6*x) + a * sp.sin(x); e4
e4.collect(sp.cos(4*x))

Symbolic Analysis 99

0 sin (G) + 0 cos (4G) + 1 cos (4G) + 1 cos (6G)
0 sin (G) + 1 cos (6G) + (0 + 1) cos (4G)

Derivatives of an undefined symbolic function, as would appear in a differential
equation, can be collected. If the function is passed to collect(), as in the following
example, it and its derivatives are collected:

f = sp.Function("f")(x) ## Applied undefined function
e5 = a*f.diff(x, 2) + a**2*f.diff(x) + b**2*f.diff(x) + a**3*f; e5
e5.collect(f)

03 5 (G) + 02 3

3G
5 (G) + 0 3

2

3G2
5 (G) + 12 3

3G
5 (G)

03 5 (G) + 0 3
2

3G2
5 (G) +

(
02 + 12) 3

3G
5 (G)

The rcollect() function (not available as a method) recursively applies
collect(). For instance,
e6 = (a * x**2 + b*x*y + a*b*x)/(a*x**2 + b*x**2); e6
sp.rcollect(e6, x) # Collects in numerator and denominator

01G + 0G2 + 1GH
0G2 + 1G2

0G2 + G (01 + 1H)
G2 (0 + 1)

Before collection, an expression may need to be expanded via expand().

4.2.2.4 The cancel() Function andMethod The cancel() function andmethod
will return an expression in the form ?/@, where ? and @ are polynomials that have
been expanded and have integer leading coefficients. This is typically used to
cancel terms that can be factored from the numerator and denominator of a rational
expression, as in the following example:

e7 = (x**3 - a**3)/(x**2 - a**2); e7
e7.cancel()

−03 + G3

−02 + G2

02 + 0G + G2

0 + G
Note that there is an implicit assumption here that G ≠ 0. However, the cancelation

is still valid for the limit as G→ 0.

4.2.2.5 The apart() and together() Functions and Methods The apart()
function and method returns a partial fraction expansion of a rational expression.
A partial fraction expansion rewrites a ratio as a sum of a polynomial and one or

100 Chapter 4

more ratios with irreducible denominators. It is of particular use for computing the
inverse Laplace transform. The together() function is the complement of apart().
Here is an example of a partial fraction expansion:

s = sp.symbols("s")
e8 = (s**3 + 6*s**2 + 16*s + 16)/(s**3 + 4*s**2 + 10*s + 7); e8
e8.apart() # Partial fraction expansion
e8.apart().together().cancel() # Putting it back together

B3 + 6B2 + 16B + 16
B3 + 4B2 + 10B + 7
B + 2

B2 + 3B + 7
+ 1+ 1

B + 1
B3 + 6B2 + 16B + 16
B3 + 4B2 + 10B + 7

4.2.3 Trigonometric Expression Manipulation

Aswe saw in section 4.2.2, expressions including trigonometric terms can bemanipu-
lated with the SymPy functions and methods that are nominally for polynomial and
rational expressions. In addition to these, considered here are two important SymPy
functions andmethods for manipulating expressions including trigonometric terms,
with a focus on the trigonometric terms themselves.

4.2.3.1 The trigsimp() Function and Method The trigsimp() function and
method attempts to simplify a symbolic expression via trigonometric identities. For
instance, it will apply the double-angle formulas, as follows:

x = sp.symbols("x", real=True)
e9 = 2 * sp.sin(x) * sp.cos(x); e9
e9.trigsimp()

2 sin (G) cos (G)
sin (2G)

Here is a more involved expression:

e10 = sp.cos(x)**4 - 2*sp.sin(x)**2*sp.cos(x)**2 + sp.sin(x)**4; e10
e10.trigsimp()

sin4 (G) − 2 sin2 (G) cos2 (G) + cos4 (G)
cos (4G)

2
+ 1

2
The hyperbolic trignometric functions are also handled by trigsimp(), as in the

following example:

e11 = sp.cosh(x) * sp.tanh(x); e11
e11.trigsimp()

Symbolic Analysis 101

cosh (G) tanh (G)
sinh (G)

4.2.3.2 The expand_trig() Function The sp.expand_trig() function applies
the double-angle or sum identity in the expansive direction, opposite the direction
of trig_simp(); that is,

e12 = sp.cos(x + y); e12
sp.expand_trig(e12)

cos (G + H)
− sin (G) sin (H) + cos (G) cos (H)

4.2.4 Power Expression Manipulation

There are three important power identities:

G0G1 = G0+1 for G ≠ 0, 0, 1 ∈C (4.1)

D2E2 = (DE)2 for D, E ≥ 0 and 2 ∈R (4.2)

(I3)= = I3= for I, 3 ∈C and = ∈Z. (4.3)

Equations (4.1) to (4.3) are applied in several power expression simplification
functions and methods considered here.

4.2.4.1 The powsimp() Function and Method The powsimp() function and
method applies the identities of equations (4.1) and (4.2) from left-to-right (replacing
the left pattern with the right). It will only apply the identity if it holds. Consider
the following, applying equation (4.1):

x = sp.symbols("x", complex=True, nonzero=True)
a, b = sp.symbols("a, b", complex=True)
e13 = x**a * x**b; e13
e13.powsimp()

G0G1

G0+1

Applying equation (4.2),

u, v = sp.symbols("u, v", nonnegative=True)
c = sp.symbols("c", real=True)
e14 = u**c * v**c; e14
e14.powsimp()
D2E2

(DE)2

102 Chapter 4

Under certain conditions (i.e., 2 ∈Q, a literal rational exponent), equation (4.2) is
applied right-to-left automatically, so powsimp() appears to have no effect. For
instance,

e15 = u**3 * v**3; e15
e15.powsimp()

D3E3

D3E3

For expressions for which the conditions for an identity does not hold, it can still
be applied (at your own risk) via the force=True argument.

4.2.4.2 The expand_power_exp() and expand_power_base() Functions The
expand_power_exp() function applies equation (4.1) from right-to-left (opposite
of powsimp()), as follows:
e16 = x**(a + b); e16
sp.expand_power_exp(e16)

G0+1

G0G1

Similarly, expand_power_base() applies equation (4.2) from right-to-left (oppo-
site of powsimp(), as follows:
e17 = (u * v)**c; e17
sp.expand_power_base(e17)

(DE)2
D2E2

Again, the identity will not be applied if its conditions do not hold for the
expression; however, with the parameter force=True, it will be applied in any
case.

4.2.4.3 The powdenest() Function The powdenest() function applies equa-
tion (4.3) from left-to-right. For instance,

z, d = sp.symbols("z, d", complex=True)
n = sp.symbols("n", integer=True)
e18 = (z**d)**n; e18
sp.powdenest(e18)

I3=

I3=

However, as we see from e18, the denesting is automatically applied. There may
be situations in which powdenest()must still be applied manually.

Symbolic Analysis 103

4.2.5 Exponential and Logarithmic Expression Manipulation

For G, H ≥ 0 and = ∈R, the following identities hold:
log(GH)= log(G) + log(H) (4.4)

log(G=)= = log(G) (4.5)

These can be applied with the expand_log() and logcombine() functions.

4.2.5.1 The expand_log() Function The expand_log() function applies equa-
tions (4.4) and (4.5) from left-to-right. In the following example, it applies
equation (4.4):

x, y = sp.symbols("x, y", positive=True)
n = sp.symbols("n", real=True)
e19 = sp.log(x * y); e19
sp.expand_log(e19)

log (GH)
log (G) + log (H)

In the following example, it applies equation (4.4):

e20 = sp.log(x**n); e20
sp.expand_log(e20)

log (G=)
= log (G)

4.2.5.2 The logcombine() Function The logcombine() function applies equa-
tions (4.4) and (4.5) from right-to-left. In the following example, it applies
equation (4.4):

e21 = sp.log(x) + sp.log(y); e21
sp.logcombine(e21)

log (G) + log (H)
log (GH)

In the following example, it applies equation (4.4):

e22 = n * sp.log(x); e22
sp.logcombine(e22)
= log (G)
log (G=)

104 Chapter 4

4.2.6 Rewriting Expressions in Terms of Other Functions

At times, there are identities that can translate an expression in terms of one func-
tion (or set of functions) into an expression in terms of another function (or set
of functions). In SymPy, the rewrite()method can perform this translation. For
instance, Euler’s formula, 4 9G = cos G + 9 sin G can be applied:

x = sp.symbols("x", complex=True)
e23 = sp.exp(1j * x); e23
e24 = e23.rewrite(sp.cos); e24 # Apply left-to-right
e24.rewrite(sp.exp) # Apply right-to-left

41.08G

8 sin (1.0G) + cos (1.0G)
41.08G

Here is an example with a hyperbolic trigonometric function:

e25 = sp.tanh(x); e25
e25.rewrite(sp.exp)

tanh (G)
4G − 4−G
4G + 4−G

Finally, consider the following example with trigonometric functions:

x, y = sp.symbols("x, y", real=True)
e26 = sp.tan(x + y)**2; e26
e26.rewrite(sp.cos)

tan2 (G + H)
cos2 (G + H − �

2

)
cos2 (G + H)

4.2.7 Substituting and Replacing Expressions

One expression can be substituted for another via a few different methods, the two
most useful of which are considered here.

4.2.7.1 The subs()Method The subs()method returns a copy of an expression
with specific subexpressions replaced. There are three ways to specify substitutions
for an expression expr:
• expr.subs(old, new), in which old is replaced with new
• expr.subs(iterable), in which iterable (e.g., a list) contains old/new
pairs like [(old0, new0), (old1, new1), ...]
• expr.subs(dictionary), in which dictionary contains old/new pairs like
{old0: new0, old1: new1, ...}

Consider the following simple examples:

Symbolic Analysis 105

x, y, z = sp.symbols("x, y, z")
sp.sqrt(x + y).subs(x, 5)
(x + y**2 + z).subs({x: z, y: 2*z})√

H + 5

4I2 + 2I
By default, when an ordered iterable like a list or tuple is provided, substitu-

tions are performed in the order given, as in the following example:

(x + y).subs(((x, y), (y, z)))
2I

We see that the second substitution H→ I is applied after the first, G→ H. The
parameter simultaneous, by default False, can be passed as True so that new
subexpressions are ignored by later substitutions, as in the following example:

(x + y).subs(((x, y), (y, z)), simultaneous=True)
H + I

For dictionary substitutions, which are unordered, a canonical ordering based
on the number of operations is used for reproducibility. We do not recommend
relying on this canonical ordering, so if the order of substitutions is important, we
recommend using an ordered iterable.
If the substitutions result in a numerical value, it will by default remain a symbolic

expression:

sp.srepr((x + y).subs(((x, 1), (y, 3))))

'Integer(4)'

To get a numeric type from the result, the evalf()method can be used:

(1/y).subs(y, 3.0).evalf(n=20) # subs() first (20 decimal places)
(1/y).evalf(subs={y: 3.0}, n=20) # evalfr() subs (20 decimal places)

0.33333333333333331483
0.33333333333333333333

Note that passing the substitutions to through evalf() can result in a more
accurate representation, so this technique is preferred. We will later [TODO: ref]
return to more powerful techniques for numerical evaluation that convert SymPy
expressions to numerically evaluable functions.

4.2.7.2 The replace() Method The replace() method is similar to subs(),
but it has matching capabilities. Common usage of the replace() method uses
wildcard variables of class sp.core.symbol.Wild thatmatch anything in a pattern.
For instance,

106 Chapter 4

w = sp.symbols("w", cls=sp.Wild)
expr = sp.sin(x) + sp.sin(3*x)**2; expr
expr.replace(sp.sin(w), sp.cos(w)/w)

sin (G) + sin2 (3G)
cos (G)
G
+ cos2 (3G)

9G2

Note that the wildcard variable w was able to match both x and 3*x, and that the
thewildcard could be used in the new expression aswell. In this example, and in gen-
eral, these replacement rules are applied without head to their validity, so theymust
be used with caution. For more advanced usage, see the documentation on wildcard
matching, SymPy Development Team (2023b; § 6 Symbol (sympy.core.symbol,
Wild class)) and the documentation for replacement, SymPy Development Team
(2023b; § Basic (sympy.core.basic.Basic, replace()method)).

Box 4.1 Further Reading

• SymPy Development Team (2023c), A tutorial introduction to simplification
in SymPy
• SymPy Development Team (2023a), A tutorial on advanced SymPy expression
manipulation, including information about expression trees
• SymPy Development Team (2023b; § Basic (sympy.core.basic.Basic,
subs()method)), SymPy documentation on the subs()method
• SymPy Development Team (2023b; § Basic (sympy.core.basic.Basic,
replace() method)), SymPy documentation on the replace() method,
including more advanced usage
• SymPy Development Team (2023b; 6 Symbol (sympy.core.symbol, Wild
class)), SymPy documentation on the Wild class, including more advanced
pattern matching

Symbolic Analysis 107

4.3 Solving Equations Algebraically LINK
4U

Virtually every engineering analysis requires the algebraic solution
of an equation or a, more generally, a system of equations (i.e., a set
of equations) to be solved simultaneously. For the engineer, this set of equations
typically encodes a set of design constraints, design heuristics, and physical laws.
In general, a system (of < equations in = unknown variables G0 , · · · , G=−1 ∈C and
with < functions 50 , · · · , 5<−1 can be represented as the set

(=

50(G0 , · · · , G=)= 0
...

5<(G0 , · · · , G=)= 0

.

A solution for (is an =-tuple of values for G8 that satisfies every equation in (.
There are three possible cases for a given system (of equations:

1. The system (has no solutions.
2. The system (has exactly one solution, said to be unique.
3. The system (has more than one solution (potentially infinitely many).

For some systems, a solution exists, but cannot be expressed in a closed-form or
symbolic (“analytic”) way. For such systems, a numerical solution is appropriate
(see chapter 5). In some cases (e.g., = linear, independent equations and = unknown
variables), a unique solution is guaranteed to exist.
There are two high-level SymPy function for solving equations algebraically,

sp.solve() and sp.solveset(). The former is older, but remains the more useful
for us; the latter has a simpler interface and is somewhat more mathematically
rigorous, but it is often difficult to use its results programmatically. We will focus
on sp.solve(). Neither function guarantees that it will find a solution, even if it
exists, except in special cases.
Representing an equation in SymPy can be done explicitly or an expression can

be treated as one side of an equation, with the other side implicitly 0. In other words,
the following are equivalent ways of defining the equation G2 − H2 = 2:

x, y = sp.symbols("x, y")
x**2 - y**2 - 2 # == 0 Implicit equation
sp.Eq(x**2 - y**2, 2) # Explicit equation

https://engineering-computing.ricopic.one/4u
https://engineering-computing.ricopic.one/4u

