Symbolic Analysis 107

4.3 Solving Equations Algebraically

Virtually every engineering analysis requires the algebraic solution
of an equation or a, more generally, a system of equations (i.e., a set
of equations) to be solved simultaneously. For the engineer, this set of equations
typically encodes a set of design constraints, design heuristics, and physical laws.
In general, a system S of m equations in n unknown variables xy, - - - , x,—;1 € C and
with m functions fy, - - - , fiu—1 can be represented as the set

fO(xOI"' /xﬂ):()
S=<:

fm(x()l"' /xﬂ)zo

A solution for S is an n-tuple of values for x; that satisfies every equation in S.

There are three possible cases for a given system S of equations:
1. The system S has no solutions.

2. The system S has exactly one solution, said to be unique.

3. The system S has more than one solution (potentially infinitely many).

For some systems, a solution exists, but cannot be expressed in a closed-form or
symbolic (“analytic”) way. For such systems, a numerical solution is appropriate
(see chapter 5). In some cases (e.g., n linear, independent equations and n unknown
variables), a unique solution is guaranteed to exist.

There are two high-level SymPy function for solving equations algebraically,
sp.solve() and sp.solveset (). The former is older, but remains the more useful
for us; the latter has a simpler interface and is somewhat more mathematically
rigorous, but it is often difficult to use its results programmatically. We will focus
on sp.solve(). Neither function guarantees that it will find a solution, even if it
exists, except in special cases.

Representing an equation in SymPy can be done explicitly or an expression can
be treated as one side of an equation, with the other side implicitly 0. In other words,
the following are equivalent ways of defining the equation x? — y2 = 2:
| x, y = sp.symbols("x, y")
| xk*2 — yxx2 - 2 # == 0 Implicit equation
| sp.Eq(x*+2 - y**2, 2) # Explicit equation

https://engineering-computing.ricopic.one/4u
https://engineering-computing.ricopic.one/4u

108 Chapter 4

4.3.1 The sp.solve() Function

The sp.solve () function has the capability of solving a large class of systems of
equations algebraically. The function has many optional arguments, but its basic
usage is

| sp.solve(f, *symbols, *+flags)

Here is a basic interpretation of each argument:

e f: An equation or expression that is implicitly equal to zero or an iterable of
equations or expressions.

e symbols: A symbol (e.g., variable) to solve for or an iterable of symbols.

e flags: Optional arguments, of which there are many. We recommend always
using the dict=True option because it guarantees a consistent output: a list
of dictionaries, one for each solution.

Consider the linear system of 3 equations and 3 unknown variables:

3x -2y +6z=-9 (4.6a)
8y +4z=—1 (4.6b)
-x+4y =0. (4.6¢0)

The sp.solve () function can be deployed to solve this system as follows:

X, ¥, z = sp.symbols("x, y, z", complex=True)
S1 = [

3%x - 2%y + 6xz + 9, # == 0

8y + 4xz + 1, # == 0

-xX + 4xy, # ==
] # A system of 3 equations and 3 unknowns
sol = sp.solve(S1, [x, y, z], dict=True); sol

[{x: 15, y: 15/4, z: -31/4}]

Now consider a simpler system of a single equation that includes a symbolic
parameter a:
x*+3x +a.

Applying sp.solve(),

|a = sp.symbols("a", complex=True)
[82 = [x**2 + 2%x + a]l # A system of 1 equation and 1 unknown
|sol = sp.solve(S2, [x], dict=True); sol

[{x: -sqrt(1 - a) - 1}, {x: sqrt(1 - a) - 1}]

The quadratic formula has been applied, which yields two solutions, given in the
sol list. Note that the solver was alerted to which symbolic variable was to be
treated as an unknown variable (i.e., x) and which was to be treated as a known
parameter (i.e., a) by the second argument [x] (i.e., symbols).

Symbolic Analysis 109

Suppose the solutions for x were to be substituted into an expression containing
x. The dict object returned (here assigned to sol) can be used with the subs ()
method. For instance,

|(x + 5).subs(sol[0])
|(X + 5).subs(sol[1])

4-Vl—-a
Vi-a+4

The sp.solve() function can solve for expressions and undefined functions, as
well. Here we solve for an undefined function:

| f = sp.Function("f")
| eq = sp.Eq(f(x)**2 + 2*sp.diff(f(x), x), £(x))
| sol = sp.solve(eq, f(x), dict=True)

04240 = @)

V1=84:f ()

fo=3-Y—
1-84f()
o

It can solve for the derivative term, too, as follows:
| sol = sp.solve(eq, sp.diff(f(x), x), dict=True)

d o (1=F) f@)
A T

Example 4.1

You are designing the truss structure shown in figure 4.2. The external load of
fr=- fp; (we use the standard unit vectors i]A', ﬁ), where fr>0, is given. As
the designer, you are to make the w dimension as long as possible under the
following constraints:

e Minimize the dimension &
The tension in all members is no more than a given T
The compression in all members is no more than a given C
The magnitude of the support force at pin A is no more than a given P,
The magnitude of the support force at pin C is no more than a given Pc

Use a static analysis and the method of joints to develop a solution for the force in
each member F4p, Fac, etc., and the reaction forces using the sign convention that
tension is positive and compression is negative. Create a function that determines

110 Chapter 4

design feasibility for a given set of design parameters {fr,T,C, P4, Pc} and test
the function.

7

Figure 4.2. A truss with pinned joints, supported by a hinge and a floating support,
with an applied force f.

Using the method of joints, we proceed through the joints, summing forces in
the x- and y-directions. We will assume all members are in tension, and their
sign will be positive if this is the case and negative, otherwise. Beginning with
joint A, which includes two reaction forces R4, and R4, from the support,

YF,=0; Raox+Fap+Faccos8=0 (4.7)
TF, =0; Ray — Fac sin6=0. (4.8)

The angle 6 is known in terms of the dimensions w and & as
0 = arctan —.
w

These equations can be encode symbolically as follows:

RAx, RAy, FAB, FAC, theta= sp.symbols(
"RAx, RAy, FAB, FAC, theta", real=True

)

h, w = sp.symbols("h, w", positive=True)

eqhAx = RAx + FAB + FAC*sp.cos(theta)

eqAy = RAy - FAC+sp.sin(theta)

theta_wh = sp.atan(h/w)

Proceeding to joint B,
YF,=0; —Fap+Fpp +Fgecos6=0 (4.9)
YF,=0; —Fpc — Fpesin 0 =0. (4.10)

Encoding these equations,

Symbolic Analysis 111

| FBD, FBE, FBC = sp.symbols("FBD, FBE, FBC", real=True)
| eqBx = -FAB + FBD + FBE+*sp.cos(theta)
| eqBy = -FBC - FBE*sp.sin(theta)

For joint C, the floating support has a vertical reaction force R¢, so the analysis
proceeds as follows:

YF,=0; —Faccos@+Fcp=0 (4.11)
YF,=0; FacsinO + Fpc + Rc =0. (4.12)
Encoding these equations,

|FCE, RC = sp.symbols("FCE, RC", real=True)
| eqCx = -FAC#sp.cos(theta) + FCE
| eqCy = FAC*sp.sin(theta) + FBC + RC

For joint D, we can recognize that DE is a zero-force member:
YF,=0; —Fpgp +Fpr=0 (4.13)
XF, =0; Fpe=0. (4.14)
Encoding these equations,

| FDE, FDF = sp.symbols("FDE, FDF", real=True)
| eqDx = -FBD + FDF
| eqDy = FDE

Proceeding to joint E,
YF,=0; —Fcg—Fpgcos O+ Fgrcos0=0 (4.15)
LF,=0; FgesinO@ + Fpg + Fgpsin 6 =0. (4.16)
Encoding these equations,

| FEF = sp.symbols("FEF", real=True)
| eqEx = -FCE - FBE+sp.cos(theta) + FEF+*sp.cos(theta)
| eqEy = FBE*sp.sin(theta) + FDE + FEF+*sp.sin(theta)

Finally, consider joint F, with the externally applied force fr,
YF,=0; —Fpr—Fgrcos0=0 (4.17)
YF,=0; —fr—Fgrsin0=0. (4.18)
Encoding these equations,

| fF = sp.symbols("fF", positive=True)
|eqFx = -FDF - FEF*sp.cos(theta)
| eqFy = ~fF - FEF+*sp.sin(theta)

112 Chapter 4

In total, we have 12 force equations and 12 unknown forces (9 member forces
and three reaction forces). Let’s construct the system and solve it for the unkown
forces, as follows:

S_forces = [
egAx, eqAy, eqgBx, egBy, eqCx, eqCy,
eqDx, eqDy, eqEx, eqEy, eqFx, eqFy,
] # 12 force equations
forces_unknown = [
FAB, FAC, FBC, FBD, FBE, FCE, FDF, FDE, FEF, # 9 member forces
RAx, RAy, RC, # 3 reaction forces
] # 12 unkown forces
sol_forces = sp.solve(S_forces, forces_unknown, dict=True); sol_forces

[{FAB: 2xfFxcos(theta)/sin(theta),
FAC: -2xfF/sin(theta),
FBC: -fF,
FBD: fF*cos(theta)/sin(theta),
FBE: fF/sin(theta),
FCE: -2*fF*cos(theta)/sin(theta),
FDE: O,
FDF: fFxcos(theta)/sin(theta),
FEF: -fF/sin(theta),

RAx: O,
RAy: -2xfF,
RC: 3*fF}]

This solution is in terms of fr, which is known, and 6. Because w and h are our
design parameters, let’s substitute eqtheta such that our solution is rewritten
in terms of fr, w, and h. Create a list of solutions as follows:

forces_wh = [] # Initialize
for force in forces_unknown:
force_wh = force.subs(
sol_forces[0]
) .subs(
theta, theta_wh
) .simplify ()
forces_wh.append(force_wh)
print(f"{force} = {force_wh}")

Symbolic Analysis 113

FAB = 2xfF*w/h

FAC = -2*fF*sqrt(h**2 + wx*2)/h
FBC = —-fF

FBD = fF*w/h

FBE = fF*sqrt(h**2 + wx*2)/h
FCE = -2*fF*w/h

FDF = fF*w/h

FDE = 0

FEF = -fFxsqrt(h**2 + w**2)/h
RAx = 0

RAy = -2xfF

RC = 3*fF

This set of equations is excellent for design purposes. Because fr,w, >0,
the sign of each force indicates tension (+) or compression (—). For the forces
with the factor w/h, clearly increasing w or decreasing h increases the force,
proportionally. For the forces with the factor Vh2 + w?/h, things are a bit more
subtle. Introducing a new parameter r = w/h, we can rewrite these equations in
a somewhat simpler manner, as follows:

r = sp.symbols("r", positive=True)

forces_r = [] # Initialize

force_r_subs = {} # For substitutions

for i, force in enumerate(forces_wh):
force_r = force.subs(w, h*r).simplify()
forces_r.append(force_r)
force_r_subs[forces_unknown[i]] = force_r
print (f"{forces_unknown[i]l} = {force_r}")

FAB = 2xfFx*r

FAC = -2*fF*sqrt(r**2 + 1)
FBC = -fF

FBD = fFx*r

FBE = fF*sqrt(r**2 + 1)
FCE = -2*xfFx*r

FDF = fFx*r

FDE = 0

FEF = -fFxsqrt(r**2 + 1)
RAx = 0

RAy = -2*fF

RC = 3*fF

It is worthwhile investigating the term Vr2 + 1. Generate a graph over a
reasonable range of r =w/h and compare it to r and 2r, as follows:

114 Chapter 4

r_a = np.linspace(0, 5, 51)

fig, ax = plt.subplots()

ax.plot(r_a, np.sqrt(r_a**2 + 1), label="$\\sqrt{r 2+1}§")
ax.plot(r_a, r_a, label="r")

ax.plot(r_a, 2*r_a, label="$2 r$")

ax.set_xlabel("$r = w/h$")

ax.grid()

ax.legend()

0 1 2 3 4 5
r=w/h

Figure 4.3. A graph of Vr2+ 1, where r =w/h.

So we see that Vr2 + 1 —r. Thatis, r =w/h is the defining parameter and the
design requirements are to maximize w and minimize h, which is tantamount
to maximizing r. Under the reasonable assumption that r > 1, we can see the
member with the most tension is AB, with its force Fap =27 fr, and the member
with the most compression is AC, with its force Fac =-2Vr? + 1 fr. From our
design requirements, then,

Fap=2rfr<T (4.19)
—Fac=2Vr2+1fr<C. (4.20)

This leads to two constraints on 7, call them rr and rc, both maxima, which can
be solved for automatically as follows:

Symbolic Analysis 115

T, C = sp.symbols("T, C", positive=True)
eqrT = FAB.subs(force_r_subs) - T # <=0
eqrC = -FAC.subs(force_r_subs) - C # <= 0
sol_rT = sp.solve(eqrT, r, dict=True) # Solution for rr
sol_rC = sp.solve(eqrC, r, dict=True) # Solution for rc
r_maxima = {

"Tension": sol_rT[0],

"Compression": sol_rC[0],

}

print (r_maxima)

{'Tension': {r: T/(2*fF)}, 'Compression': {r: sqrt(C**2 -
o 4*xfF*%2) /(2+fF)}}

Another set of constraints apply to the supports. From the design requirements,

IRal=\JR}, + R}, <Pa (4.21)
|Rc|=|Rc|<Pc (4.22)

From our results above, the reaction forces don’t depend on r (or w or h), so
these constraints are merely to be checked to ensure that the design problem is
feasible. Proceeding in a similar manner as above, we obtain two constraints on
fr, maxima f4 and fc as follows:

PA, PC = sp.symbols("PA, PC", positive=True)
eqRA = sp.sqrt(RAx**2 + RAy**2).subs(force_r_subs) - PA # <= 0
eqRC = sp.Abs(RC) .subs(force_r_subs) - PC # <= 0
sol_fFA sp.solve(eqRA, fF, dict=True) # Solution for fy
sol_fFC = sp.solve(eqRC, fF, dict=True) # Solution for fc
load_maxima = {

"Support A": sol_fFA[O],

"Support C": sol_fFC[0],

}

print(load_maxima)

{'Support A': {fF: PA/2}, 'Support C': {fF: PC/3}}

Finally, we can create a function to perform the design, given a set of design
parameters. First, define an auxilliary function to check the support constraints:

116 Chapter 4

def check_supports(load_maxima, design_params, report=""):
for kLM, vLM in load_maxima.items():
fF_design = fF.evalf(subs=design_params)
fF_max = fF.subs(vLM).evalf (subs=design_params)
if fF_design > fF_max:

return False, f"Design infeasible due to {kLM} constraint: " \
f"{fF_design: .4g} </= {fF_max:.4g}."
else:
report += f"{kLM} constraint satisfied: " \

f"{fF_design: .4g} <= {fF_max:.4g}.\n"
report += "Design feasible for supports."
return True, report

Now define an auxilliary function to maximize r:

def maximize_r(r_maxima, design_params, report=""):

r_maxima_ = [] # Initialize numerical maxima
for k_max, r_max in r_maxima.items():
r_max_ = r.subs(r_max).evalf(subs=design_params)
if np.abs(np.imag(complex(r_max_))) > 0.: # Ensure real

report += f'"\nlNo feasible r for {k_max} constraint."
return False, None, report
r_maxima_.append(r_max_)
report += f'"\nMax r for {k_max} constraint: {r_max_:.4g}."
r_max = min(r_maxima_) # Min of the maxima if the feasible max
report += f"\nOverall max r = w/h = {r_max}."
return True, r_max, report

Finally, define the function to design the truss:

def truss_designer(load_maxima, r_maxima, design_params) :
"""Returns a dict of r=w/h ratio for the truss and a report"""
satisfied, report = check_supports(load_maxima, design_params)
if not satisfied:
return satisfied, report
satisfied, r_max, report = maximize_r(
r_maxima, design_params, report
)
if not satisfied:
return satisfied, report
return r_max, report

Define the three sets of design parameters in a dictionary:

design_parameters_dict = {
"1": {fF: 1000, T: 3500, C: 3200, PA: 3500, PC: 3500},
non: {£F: 2000, T: 4500, C: 6000, PA: 3500, PC: 3500},
"3": {fF: 2000, T: 3500, C: 3200, PA: 6500, PC: 6000}
} # Forces in N

Symbolic Analysis 117

Loop through the designs, run truss_designer (), and print each report:

|for design, design_params in design_parameters_dict.items():

| r_max, rep = truss_designer(load_maxima, r_maxima, design_params)
| rep = f"Design {design} report:\n\t" + rep.replace("\n", "\n\t")
| print(rep)

Design 1 report:
Support A constraint satisfied: 1000 <= 1750.
Support C constraint satisfied: 1000 <= 1167.
Design feasible for supports.
Max r for Tension constraint: 1.750.
Max r for Compression constraint: 1.249.
Overall max r = w/h = 1.24899959967968.
Design 2 report:
Design infeasible due to Support A constraint: 2000 </= 1750.
Design 3 report:
Support A constraint satisfied: 2000 <= 3250.
Support C constraint satisfied: 2000 <= 2000.
Design feasible for supports.
Max r for Tension constraint: 0.8750.
No feasible r for Compression constraint.

4.4 From Symbolics to Numerics

An engineering analysis typically requires that a symbolic solution
be applied via the substitution of numbers into a symbolic expression.
In section 4.2.7, we considered how to subsitute numerical values into expressions
using SymPy’s evalf () method. This is fine for a single value, but frequently an
expression is to be evaluated at an array of numerical values. Looping through
the array and applying evalf () is cumbersome and computationally slow. An
easier and computationally efficient technique using the sp.lambdify () function
is introduced in this section. The function sp.lambdify() creates an efficient,
numerically evaluable function from a SymPy expression. The basic usage of the
function is as follows:
|x = sp.symbols("x", real=True)
|expr = Xk*2 + 7
| f = sp.lambdify(x, expr)
| £(2)
11
By default, if NumPy is present, sp.lambdify () vectorizes the function such

that the function can be provided with NumPy array arguments and return NumPy
array values. However, it is best to avoid relying on the function’s implicit behavior,

https://engineering-computing.ricopic.one/ur
https://engineering-computing.ricopic.one/ur

