
Symbolic Analysis 117

Loop through the designs, run truss_designer(), and print each report:

for design, design_params in design_parameters_dict.items():
r_max, rep = truss_designer(load_maxima, r_maxima, design_params)
rep = f"Design {design} report:\n\t" + rep.replace("\n", "\n\t")
print(rep)

Design 1 report:
Support A constraint satisfied: 1000 <= 1750.
Support C constraint satisfied: 1000 <= 1167.
Design feasible for supports.
Max r for Tension constraint: 1.750.
Max r for Compression constraint: 1.249.
Overall max r = w/h = 1.24899959967968.

Design 2 report:
Design infeasible due to Support A constraint: 2000 </= 1750.

Design 3 report:
Support A constraint satisfied: 2000 <= 3250.
Support C constraint satisfied: 2000 <= 2000.
Design feasible for supports.
Max r for Tension constraint: 0.8750.
No feasible r for Compression constraint.

4.4 From Symbolics to Numerics LINK
UR

An engineering analysis typically requires that a symbolic solution
be applied via the substitution of numbers into a symbolic expression.
In section 4.2.7, we considered how to subsitute numerical values into expressions
using SymPy’s evalf()method. This is fine for a single value, but frequently an
expression is to be evaluated at an array of numerical values. Looping through
the array and applying evalf() is cumbersome and computationally slow. An
easier and computationally efficient technique using the sp.lambdify() function
is introduced in this section. The function sp.lambdify() creates an efficient,
numerically evaluable function from a SymPy expression. The basic usage of the
function is as follows:

x = sp.symbols("x", real=True)
expr = x**2 + 7
f = sp.lambdify(x, expr)
f(2)

11

By default, if NumPy is present, sp.lambdify() vectorizes the function such
that the function can be provided with NumPy array arguments and return NumPy
array values. However, it is best to avoid relying on the function’s implicit behavior,

https://engineering-computing.ricopic.one/ur
https://engineering-computing.ricopic.one/ur

118 Chapter 4

which can change when different modules are present, it is best to provide the
numerical module explicitly, as follows:

f = sp.lambdify(x, expr, modules="numpy")
f(np.array([1, 2, 3.5]))

array([8. , 11. , 19.25])

Multiple arguments are supported, as in the following example:

x, y = sp.symbols("x, y", real=True)
expr = sp.cos(x) * sp.sin(y)
f = sp.lambdify([x, y], expr, modules="numpy")
f(3, 4)

0.7492287917633428

All the usual NumPy broadcasting rules will apply for the function. For instance,

X = np.array([[1], [2]]) # 2x1 matrix
Y = np.array([[1, 2, 3]]) # 1x3 matrix
f(X, Y)

array([[0.45464871, 0.4912955 , 0.07624747],
[-0.35017549, -0.37840125, -0.05872664]])

Example 4.2

You are designing the circuit shown in figure 4.4. Treat the source voltage +(,
the source resistance '(, and the overall circuit topology as known constants.
The circuit design requires the selection of resistances '1, '2, and '3 such that
the voltage across '3, E'3 =+'3 , and the current through '1, 8'1 = �'1 , where +'3

and �'1 are known constants (i.e., design requirements). Proceed through the
following steps:

1. Solve for all the resistor voltages E': and currents 8': in terms of known
constants and '1, '2, and '3 using circuit laws

2. Apply the constraints E'3 =+'3 and 8'1 = �'1 to obtain two equations
relating '1, '2, and '3

3. Solve for '2 and '3 as functions of '1 and known constants
4. Create a design graph for the selection of '1, '2, and '3 given the following

design parameters: +(= 10 V, '(= 50 Ω, +'3 = 1 V, and �'1 = 20 mA.

Symbolic Analysis 119

+
−+(

'('2

'3'1

Figure 4.4. A resistor circuit design for example 4.2.

Solve for the Resistor Voltages and Currents Each resistor has an unknown
voltage and current. We will develop and solve a system of equations using
circuit laws. Begin by defining symbolic variables as follows:

v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3 = sp.symbols(
"v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3", real=True

)
viR_vars = [v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3]
R1, R2, R3 = sp.symbols("R1, R2, R3", positive=True)
V_S, R_S, V_R3, I_R1 = sp.symbols("V_S, R_S, V_R3, I_R1", real=True)

There are 4 resistors, so there are 2 · 4= 8 unknown voltages and currents;
therefore, we need 8 independent equations. The first circuit law we apply is
Ohm’s law, which states that the ratio of voltage over current for a resistor is
approximately constant. Applying this to each resistor, we obtain the following
4 equations:

Ohms_law = [
v_RS - R_S*i_RS, # == 0
v_R1 - R1*i_R1, # == 0
v_R2 - R2*i_R2, # == 0
v_R3 - R3*i_R3, # == 0

]

The second circuit law we apply is Kirchhoff’s current law (KCL), which
states that the sum of the current into a node must equal 0. Applying this to the
upper-middle and upper-right nodes, we obtain the following 2 equations:

KCL = [
i_RS - i_R1 - i_R2, # == 0
i_R2 - i_R3, # == 0

]

The third circuit law we apply is Kirchhoff’s voltage law (KVL), which states
that the sum of the voltage around a closed loop must equal 0. Applying this to
the left and right inner loops, we obtain the following 2 equations:

120 Chapter 4

KVL = [
V_S - v_R1 - v_RS, # == 0
v_R1 - v_R3 - v_R2, # == 0

]

Our collection of 8 equations are independent because none can be derived
from another. They make a linear system of equations, which can be solved
simultaneously as follows:

viR_sol = sp.solve(Ohms_law + KCL + KVL, viR_vars, dict=True)[0]
print(viR_sol)

8'1 =
+(('2 +'3)

'1'2 +'1'3 +'1'(+'2'(+'3'(

8'2 =
'1+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

8'3 =
'1+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

8'(=
+(('1 +'2 +'3)

'1'2 +'1'3 +'1'(+'2'(+'3'(

E'1 =
'1+(('2 +'3)

'1'2 +'1'3 +'1'(+'2'(+'3'(

E'2 =
'1'2+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

E'3 =
'1'3+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

E'(=
'(+(('1 +'2 +'3)

'1'2 +'1'3 +'1'(+'2'(+'3'(

Apply the Requirement Constraints The requirements that E'3 =+'3 and 8'1 =

�'1 can be encoded symbolically as two equations as follows:

constraints = {v_R3: V_R3, i_R1: I_R1} # Design constraints
constraint_equations = [
sp.Eq(v_R3.subs(constraints), v_R3.subs(viR_sol)),
sp.Eq(i_R1.subs(constraints), i_R1.subs(viR_sol)),

]
print(constraint_equations)

+'3 =
'1'3+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

�'1 =
'2+(+'3+(

'1'2 +'1'3 +'1'(+'2'(+'3'(

Solve for Resistances The system of 2 constraint equations and 3 unkowns
('1, '2, and '3) is underdetermined, which means there are infinite solutions.

Symbolic Analysis 121

The two equations can be solved for '1 and '2 in terms of '3 and parameters as
follows:

constraints_sol = sp.solve(
constraint_equations, [R1, R2], dict=True

)[0]
print(constraints_sol)

'1 =−'(+
+(

�'1
− '(+'3

�'1'3

'2 =
−'3 (�'1'(++'3 −+() −'(+'3

+'3

Create a Design Graph Applying the design parameters and defining numeri-
cally evaluable functions for '1 and '2 as functions of '3,

design_params = {V_S: 10, R_S: 50, V_R3: 1, I_R1: 0.02}
R1_fun = sp.lambdify(

[R3],
R1.subs(constraints_sol).subs(design_params),
modules="numpy",

)
R2_fun = sp.lambdify(

[R3],
R2.subs(constraints_sol).subs(design_params),
modules="numpy",

)

And now we are ready to create the design graph, as follows:

R3_ = np.linspace(10, 100, 101) # Values of '3
fig, ax = plt.subplots()
ax.plot(R3_, R1_fun(R3_), label="R_1 ($\\Omega$)")
ax.plot(R3_, R2_fun(R3_), label="R_2 ($\\Omega$)")
ax.set_xlabel("R_3 ($\\Omega$)")
ax.legend()
ax.grid()
plt.show()

122 Chapter 4

20 40 60 80 100

'3 (Ω)

0

100

200

300

400

500

600

700 '1 (Ω)

'2 (Ω)

Figure 4.5. A design graph for resistors '1, '2, and '3.

4.5 Vectors and Matrices LINK
RD

Symbolic vectors and matrices can be constructed, manipulated, and
operated on with SymPy. Basic vectors and matrices are represented
with the mutable sp.matrices.dense.MutableDenseMatrix class and can be
constructed with the sp.Matrix constructor, as follows:
u = sp.Matrix([[0], [1], [2]]) # 3× 1 column vector
v = sp.Matrix([[3, 4, 5]]) # 1× 3 row vector
A = sp.Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 3× 3 matrix

Without loss of generality, we can refer to vectors and matrices as matrices.
Symbolic variables can be elements of symbolic matrices; for instance, consider

the following:

x1, x2, x3 = sp.symbols("x1, x2, x3")
x = sp.Matrix([[x1], [x2], [x3]]) # 3× 1 vector

Symbolic matrix elements can be accessed with the same slicing notation as lists
and NumPy arrays; for insance:

A[:,0]
A[0,:]
A[1,1:]
x[0:,0]

https://engineering-computing.ricopic.one/rd
https://engineering-computing.ricopic.one/rd

