
122 Chapter 4

20 40 60 80 100

'3 (Ω)

0

100

200

300

400

500

600

700 '1 (Ω)

'2 (Ω)

Figure 4.5. A design graph for resistors '1, '2, and '3.

4.5 Vectors and Matrices LINK
RD

Symbolic vectors and matrices can be constructed, manipulated, and
operated on with SymPy. Basic vectors and matrices are represented
with the mutable sp.matrices.dense.MutableDenseMatrix class and can be
constructed with the sp.Matrix constructor, as follows:
u = sp.Matrix([[0], [1], [2]]) # 3× 1 column vector
v = sp.Matrix([[3, 4, 5]]) # 1× 3 row vector
A = sp.Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 3× 3 matrix

Without loss of generality, we can refer to vectors and matrices as matrices.
Symbolic variables can be elements of symbolic matrices; for instance, consider

the following:

x1, x2, x3 = sp.symbols("x1, x2, x3")
x = sp.Matrix([[x1], [x2], [x3]]) # 3× 1 vector

Symbolic matrix elements can be accessed with the same slicing notation as lists
and NumPy arrays; for insance:

A[:,0]
A[0,:]
A[1,1:]
x[0:,0]

https://engineering-computing.ricopic.one/rd
https://engineering-computing.ricopic.one/rd

Symbolic Analysis 123


0
3
6

[
0 1 2

][
4 5

]
G1

G2

G3


As with lists and contrary to arrays, these slices return a copy and not a view of

the original matrix. Elements and slices can be overwritten with the same notation
as lists and arrays, as follows:

A[0,0] = 7; A # A is changed
A[:,1] = sp.Matrix([[8], [8], [8]]); A # A is changed

7 1 2
3 4 5
6 7 8


7 8 2
3 8 5
6 8 8


Matrix row i or column j can be deleted with the row_del(i) or col_del(j)

method. These methods operate in place. For instance,

A.row_del(2); A
A.col_del(1); A[

7 8 2
3 8 5

]
[
7 2
3 5

]
Conversely, a row can be inserted at index i or a column can be inserted at index j

with the method row_insert(i, row) or col_insert(j, col). These methods
do not operate in place. For instance,

A.row_insert(2, sp.Matrix([[9, 9]])) # A is unchanged
A.col_insert(1, sp.Matrix([[9], [9]])) # A is unchanged

7 2
3 5
9 9



124 Chapter 4

[
7 9 2
3 9 5

]
Addition and subtraction works element-wise, in accordance with the matrix

mathematics, as follows:

A = sp.Matrix([[0, 1], [2, 3]]) # 2× 2 matrix
B = sp.Matrix([[4, 5], [6, 7]]) # 2× 2 matrix
A + B
A - B[

4 6
8 10

]
[
−4 −4
−4 −4

]
Matrix multiplication is in accordance with mathematical matrix multiplication

(i.e., not element-wise), as follows:

A*B
B*A[

6 7
26 31

]
[
10 19
14 27

]
Thematrix inverse, if it exists, can be computed by raising the matrix to the power

-1, as follows:
A**-1
B**-1[
− 3

2
1
2

1 0

]
[
− 7

2
5
2

3 −2

]
Thematrix transpose can be accessed as an attribute T, which returns a transposed

copy, as follows:

A.T
B.T[

0 2
1 3

]
[
4 6
5 7

]

Symbolic Analysis 125

An n-by-n identity matrix can be constructed via the eye(n) function, as follows:

sp.eye(3)
1 0 0
0 1 0
0 0 1


An n-by-mmatrix with all 0 compenents can be constructed via the zeros(n, m)

function, as follows:

sp.zeros(2,4)[
0 0 0 0
0 0 0 0

]
Similarly, an n-by-m matrix with all 1 compenents can be constructed via the

ones(n, m) function, as follows:
sp.ones(2,8)[

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

]
Adiagonal or block-diagonalmatrix can be constructed by providing the diagonal

elements to the diag() function, as follows:

D = sp.diag(1, 2, 3); D
1 0 0
0 2 0
0 0 3


The determinant of a matrix can be computed via the det()method, as follows:

D.det()
6

The eigenvalues and eigenvectors of a matrix can be computed via the
eigenvects()method, which returns a list of tuples, one for each eigenvalue, of
the form (eval, m, evec), where eval is the eigenvalue, m is the corresponding
algebraic multiplicity of the eigenvalue, and evec is the corresponding eigenvector.
For instance,

A.eigenvects()

126 Chapter 4

[(3/2 - sqrt(17)/2,
1,
[Matrix([
[-sqrt(17)/4 - 3/4],
[1]])]),

(3/2 + sqrt(17)/2,
1,
[Matrix([
[-3/4 + sqrt(17)/4],
[1]])])]

4.6 Calculus LINK
IU

Engineering analysis regularly includes calculus. Derivatives with
respect to time and differential equations (i.e., equations including
derivatives) are the key mathematical models of rigid-body mechanics (e.g., statics
and dynamics), solid mechanics (e.g., mechanics of materials), fluid mechanics,
heat transfer, and electromagnetism. Integration is necessary for solving differen-
tial equations and computing important quantities of interest. Limits and series
expansions are frequently used to in the analytic process to simplify equations and
to estimate unkown quantities. In other words, calculus is central to the enterprise
of engineering analysis.

4.6.1 Derivatives

In SymPy, it is possible to compute the derivative of an expression using the diff()
function and method, as follows:

x, y = sp.symbols("x, y", real=True)
expr = x**2 + x*y + y**2
expr.diff(x) # Or sp.diff(expr, x)
expr.diff(y) # Or sp.diff(expr, y)

2G + H
G + 2H

Higher-order derivatives can be computed by adding the corresponding integer,
as in the following second derivative:

expr.diff(x, 2) # Or sp.diff(expr, x, 2)
2

We can see that the partial derivative is applied to a multivariate expression. The
differentiation can be mixed, as well, as in the following example:

expr = x * y**2/(x**2 + y**2)
expr.diff(x, 1, y, 2).simplify() # %3/%G%H2

https://engineering-computing.ricopic.one/iu
https://engineering-computing.ricopic.one/iu

