
126 Chapter 4

[(3/2 - sqrt(17)/2,
1,
[Matrix([
[-sqrt(17)/4 - 3/4],
[1]])]),

(3/2 + sqrt(17)/2,
1,
[Matrix([
[-3/4 + sqrt(17)/4],
[1]])])]

4.6 Calculus LINK
IU

Engineering analysis regularly includes calculus. Derivatives with
respect to time and differential equations (i.e., equations including
derivatives) are the key mathematical models of rigid-body mechanics (e.g., statics
and dynamics), solid mechanics (e.g., mechanics of materials), fluid mechanics,
heat transfer, and electromagnetism. Integration is necessary for solving differen-
tial equations and computing important quantities of interest. Limits and series
expansions are frequently used to in the analytic process to simplify equations and
to estimate unkown quantities. In other words, calculus is central to the enterprise
of engineering analysis.

4.6.1 Derivatives

In SymPy, it is possible to compute the derivative of an expression using the diff()
function and method, as follows:

x, y = sp.symbols("x, y", real=True)
expr = x**2 + x*y + y**2
expr.diff(x) # Or sp.diff(expr, x)
expr.diff(y) # Or sp.diff(expr, y)

2G + H
G + 2H

Higher-order derivatives can be computed by adding the corresponding integer,
as in the following second derivative:

expr.diff(x, 2) # Or sp.diff(expr, x, 2)
2

We can see that the partial derivative is applied to a multivariate expression. The
differentiation can be mixed, as well, as in the following example:

expr = x * y**2/(x**2 + y**2)
expr.diff(x, 1, y, 2).simplify() # %3/%G%H2

https://engineering-computing.ricopic.one/iu
https://engineering-computing.ricopic.one/iu

Symbolic Analysis 127

2G2 (−G4 + 14G2H2 − 9H4)
G8 + 4G6H2 + 6G4H4 + 4G2H6 + H8

The option evaluate=False will leave the derivative unevaluated until the
doit()method is called, as in the following example:

expr = sp.sin(x)
expr2 = expr.diff(x, evaluate=False); expr2
expr2.doit()

3

3G
sin (G)

cos (G)
The derivative of an undefined function is left unevaluated, as in the following

case:

f = sp.Function("f", real=True)
expr = 3*f(x) + f(x)**2
expr.diff(x)

2 5 (G) 3
3G

5 (G) + 3
3

3G
5 (G)

As we can see, the chain rule of differentiation was applied automatically.
Differentiation works element-wise on matrices and vectors, just as it works

mathematically. For instance,

v = sp.Matrix([[x**2], [x*y]])
v.diff(x)[

2G
H

]
4.6.2 Integrals

To a symbolic integral in SymPy, use the integrate() function or method. For an
indefinite integral, pass only the variable over which to integrate, as in

x, y = sp.symbols("x, y", real=True)
expr = x + y
expr.integrate(x) # Or sp.integrate(expr, x);

∫
G + H 3G

G2

2
+ GH

Note that no constant of integration is added, so you may need to add your own.
The definite integral can be computed by providing a triple, as in the following

example,

128 Chapter 4

sp.integrate(expr, (x, 0, 3)) #
∫ 3

0 G + H 3G
sp.integrate(expr, (x, 1, y)) #

∫ H
1 G + H 3G

3H + 9
2

3H2

2
− H − 1

2
Multiple integrals can be computed in a similar fashion, as in the following

examples:

sp.integrate(expr, (x, 0, 4), (y, 2, 3)) #
∫ 3

2

∫ 4
0 G + H 3G3H

18
To create an unevaluated integral object, use the sp.Integral() constructor. To

evaluate an unevaluated integral, use the doit()method, as follows:

expr2 = sp.Integral(expr, x); expr2 # Unevaluated
expr2.doit() # Evaluate∫

(G + H) 3G

G2

2
+ GH

Integration works over piecewise functions, as in the following example:

f = sp.Piecewise((0, x < 0), (1, x >= 0)); f
sp.integrate(f, (x, -5, 5)){

0 for G < 0

1 otherwise

5
The integrate() function and method is very powerful, but it may not be able

to integrate some functions. In such cases, it returns an unevaluated integral.

4.6.3 Limits

In SymPy, a limit can be computed via the limit() function and method. The
limG→0 can be computed as follows:

sp.limit(sp.tanh(x)/x, x, 0) # limG→0 tanh(G)/G
1

The limit to infinity or negative infinity can be denoted using the sp.oo symbol,
as follows:

sp.limit(2 - x * sp.exp(-x), x, sp.oo) # limG→∞(1− G4−G)
2

The limit can be left unevaluated using the sp.Limit() constructor, as follows:

Symbolic Analysis 129

lim = sp.Limit(2 - x * sp.exp(-x), x, sp.oo); expr # Unevaluated
lim.doit() # Evaluate
G + H
2

The limit can be taken from a direction using the optional fourth argument, as
follows:

expr = 1/x
lim_neg = sp.Limit(expr, x, 0, "-"); lim_neg
lim_pos = sp.Limit(expr, x, 0, "+"); lim_pos
lim_neg.doit()
lim_pos.doit()

lim
G→0−

1
G

lim
G→0+

1
G

−∞
∞

4.6.4 Taylor Series

A Taylor series (i.e., Taylor expansion) is an infinite power series approximation of
an infinitely differentiable function near some point. For a function 5 (G), the Taylor
series at point G0 is given by

∞∑
==0

5 (=)

=!
(G − G0)= = 5 (G0) + 5 ′(G0)(G − G0) +

5 ′′(G0)
2!
(G − G0)2 + · · · .

We often represent terms with power order < and greater with the big-O notation

$((G − G0)<). For instance, for an expansion about G0 = 0,
∞∑
==0

5 (=)

=!
(G)= = 5 (0) + 5 ′(G0)(G − G0) +$(G2).

In SymPy, the Taylor series can be found via the series() function or method.
For instance,

f = sp.sin(x)
f.series(x0=0, n=4) # Or sp.series(f, x0=0, n=4)

G − G
3

6
+$

(
G4)

The sp.O() function, which appears in this result, automatically absorbs higher-
order terms. For instance,

x**2 + x**4 + x** 5 + sp.O(x**4)

G2 +$
(
G4)

130 Chapter 4

To remove the sp.O() function from an expression, call the removeO()method,
as follows:

f.series(x0=0, n=4).removeO()

−G
3

6
+ G

Removing the higher-order terms is frequently useful when we would like to use
the =th-order Taylor polynomial, a truncated Taylor series, as an approximation of
a function.

4.7 Solving Ordinary Differential Equations LINK
J1

Engineering analysis regularly includes the solution of differential
equations. Differential equations are those equations that contain
derivatives. An ordinary differential equation (ODE) is a differential equation that
contains only ordinary, as opposed to partial, derivatives. A linear ODE—one for
which constant multiples and sums of solutions are also solutions—is an important
type that represent linear, time-varying (LTV) systems. For this class of ODEs, it
has been proven that for a set of initial conditions, a unique solution exists (Kreyszig
2010; p. 108).
A constant-coefficient, linear ODE can represent linear, time-invariant (LTI)

systems. An LTV or LTI system model can be represented as a scalar =th-order
ODE, or as a system of = 1st-order ODEs. As a scalar =th-order linear ODE, with
independent time variable C, output function H(C), forcing function 5 (C), and constant
coefficients 08 , has the form

H(=)(C) + 0=−1H
(=−1)(C) + · · · 01H

′(C) + 00H(C)= 5 (C). (4.23)

The forcing function 5 (C) can be written as a linear combination of derivatives of
the input function D(C)with < + 1≤ = + 1 constant coefficients 1 9 , as follows:

5 (C)= 1<D(<)(C) + 1<−1D
(<−1)(C) + · · · + 11D

′(C) + 10D(C).
Alternatively, the same LTI system model can be represented by a system of =
1st-order ODEs, which can be written in vector form as

x′(C)=Gx(C) +Hu(C) (4.24a)

y(C)=Ix(C) +Ju(C), (4.24b)

where x(C) is called the state vector, u(C) is called the input vector, and y(C) is
called the output vector (they are actually vector-valued functions of time), and
G, H, I, and J are matrices containing constants derived from system parameters
(e.g., a mass, a spring constant, a capacitance, etc.). Equation (4.24) is called an LTI
state-space model, and it is used to model a great many engineering systems.

https://engineering-computing.ricopic.one/j1
https://engineering-computing.ricopic.one/j1

