
130 Chapter 4

To remove the sp.O() function from an expression, call the removeO()method,
as follows:

f.series(x0=0, n=4).removeO()

−G
3

6
+ G

Removing the higher-order terms is frequently useful when we would like to use
the =th-order Taylor polynomial, a truncated Taylor series, as an approximation of
a function.

4.7 Solving Ordinary Differential Equations LINK
J1

Engineering analysis regularly includes the solution of differential
equations. Differential equations are those equations that contain
derivatives. An ordinary differential equation (ODE) is a differential equation that
contains only ordinary, as opposed to partial, derivatives. A linear ODE—one for
which constant multiples and sums of solutions are also solutions—is an important
type that represent linear, time-varying (LTV) systems. For this class of ODEs, it
has been proven that for a set of initial conditions, a unique solution exists (Kreyszig
2010; p. 108).
A constant-coefficient, linear ODE can represent linear, time-invariant (LTI)

systems. An LTV or LTI system model can be represented as a scalar =th-order
ODE, or as a system of = 1st-order ODEs. As a scalar =th-order linear ODE, with
independent time variable C, output function H(C), forcing function 5 (C), and constant
coefficients 08 , has the form

H(=)(C) + 0=−1H
(=−1)(C) + · · · 01H

′(C) + 00H(C)= 5 (C). (4.23)

The forcing function 5 (C) can be written as a linear combination of derivatives of
the input function D(C)with < + 1≤ = + 1 constant coefficients 1 9 , as follows:

5 (C)= 1<D(<)(C) + 1<−1D
(<−1)(C) + · · · + 11D

′(C) + 10D(C).
Alternatively, the same LTI system model can be represented by a system of =
1st-order ODEs, which can be written in vector form as

x′(C)=Gx(C) +Hu(C) (4.24a)

y(C)=Ix(C) +Ju(C), (4.24b)

where x(C) is called the state vector, u(C) is called the input vector, and y(C) is
called the output vector (they are actually vector-valued functions of time), and
G, H, I, and J are matrices containing constants derived from system parameters
(e.g., a mass, a spring constant, a capacitance, etc.). Equation (4.24) is called an LTI
state-space model, and it is used to model a great many engineering systems.

https://engineering-computing.ricopic.one/j1
https://engineering-computing.ricopic.one/j1

Symbolic Analysis 131

Solving ODEs and systems of ODEs is a major topic of mathematical engineering
analysis. It is typically the primary topic of one required course and a secondary
topic of several others. Understanding when these solutions exist, whether they are
unique, and how they can be found adds much to the understanding of engineering
systems. However, it is also true that CASs such as SymPy offer the engineer
excellent tools for making quick and adaptable work of this task.
Consider the ODE

3H′(C) + H(C)= 5 (C),
where the forcing function 5 (C) is defined piecewise as

5 (C)=
{

0 C < 0

1 C ≥ 0.

The SymPy dsolve() function can find the general solution (i.e., a family of
solutions for any initial conditions) with the following code:

t = sp.symbols("t", nonnegative=True)
y = sp.Function("y", real=True)
f = 1 # Or sp.Piecewise(), but C ≥ 0 already restricts 5 (C)
ode = sp.Eq(3*y(t).diff(t) + y(t), f) # Define the ODE
sol = sp.dsolve(ode, y(t)); sol # Solve

H(C)=�14
− C3 + 1

The solution is returned as an sp.Eq() equation object. Note the unknown constant
�1 in the solution. To find the specific solution (i.e., the general solution with the
initial condition applied to determine �1) for a given initial condition H(0)= 5,

sol = sp.dsolve(ode, y(t), ics={y(0): 5}); sol

H(C)= 1+ 44−
C
3

Now consider the ODE

H′′(C) + 5H′(C) + 9H(C)= 0.

The SymPy dsolve() function can find the general solution with the following
code:

ode = sp.Eq(y(t).diff(t, 2) + 5*y(t).diff(t) + 9*y(t), 0)
sol = sp.dsolve(ode, y(t)); sol

H(C)=
(
�1 sin

(√
11C
2

)
+�2 cos

(√
11C
2

))
4−

5C
2

This is a decaying sinusoid. Applying two initial conditions, H(0)= 4 and H′(0)= 0,
we obtain the following:

132 Chapter 4

sol = sp.dsolve(
ode, y(t),
ics={y(0): 4, y(t).diff(t).subs(t, 0): 0}

); sol

H(C)=
©­­«

20
√

11 sin
(√

11C
2

)
11

+ 4 cos
(√

11C
2

)ª®®¬ 4−
5C
2

We see here that to apply the initial condition H′(0)= 0, the derivative must be
applied before substituting C→ 0.
Solving sets (i.e., systems) of first-order differential equations is similar. Consider

the set of differential equations

H′1(C)= H2(C) − H1(C) and H′2(C)= H1(C) − H2(C).
To find the solution for initial conditions H1(0)= 1 and H2(0)=−1, we can use the
following technique:

t = sp.symbols("t", nonnegative=True)
y1, y2 = sp.symbols("y1, y2", cls=sp.Function, real=True)
odes = [y1(t).diff(t) + y1(t) - y2(t), y2(t).diff(t) + y2(t) - y1(t)]
ics = {y1(0): 1, y2(0): -1}
sol = sp.dsolve(odes, [y1(t), y2(t)], ics=ics)
print(sol)

[Eq(y1(t), exp(-2*t)), Eq(y2(t), -exp(-2*t))]

In engineering, it is common to express a set of differential equations as a state-
space model, as in equation (4.24). The following example demonstrates how to
solve these with SymPy.

Example 4.3

Consider the electromechanical schematic of a direct current (DC) motor shown
in figure 4.6. A voltage source +((C) provides power, the armature winding
loses some energy to heat through a resistance ' and stores some energy in a
magnetic field due to its inductance !, which arises from its coiled structure.
An electromechanical interaction through the magnetic field, shown as M, has
torque constant " and induces a torque on the motor shaft, which is supported
by bearings that lose some energy to heat via a damping coefficient �. The rotor’s
mass has rotational moment of inertia �, which stores kinetic energy. We denote
the voltage across an element with E, the current through an element with 8, the
angular velocity across an element with Ω, and the torque through an element
with).

Symbolic Analysis 133

+
−+((C)

' !

M

�

�

Ω

Electrical Mechanical

Figure 4.6. An electromechanical schematic of a DC motor.

A state-space model state equation in the form of equation (4.24a) can be derived
for this system, with the result as follows:

3

3C

[
Ω�

8!

]
︸ ︷︷ ︸

x′(C)

=

[
−�/� "/�
− "/! −'/!

]
︸ ︷︷ ︸

G

[
Ω�

8!

]
︸︷︷︸
x(C)

+
[

0
1/!

]
︸︷︷︸

H

[
+(

]
︸︷︷︸
u(C)

.

We choose y=
[
Ω�

]
as the output vector, which yields output equation (i.e.,

equation (4.24b)) [
Ω�

]
︸︷︷︸
y(C)

=
[
1 0

]
︸ ︷︷ ︸

I

[
Ω�

8!

]
︸︷︷︸
x(C)

+
[
0
]

︸︷︷︸
J

[
+(

]
︸︷︷︸
u(C)

.

Together, these equations are a state-space model for the system.
Solve the state equation for x(C) and the output equation for y(C) for the following
case:

• The input voltage +((C)= 1 V for C ≥ 0
• The initial condition is x(0)= 0

We begin by defining the parameters and functions of time as SymPy symbolic
variables and unspecified functions as follows:

R, L, K_M, B, J = sp.symbols("R, L, K_M, B, J", positive=True)
W_J, i_L, V_S = sp.symbols(

"W_J, i_L, V_S", cls=sp.Function, real=True
) # Ω� , 8! , +(
t = sp.symbols("t", real=True)

Now we can form the symbolic matrices and vectors:

134 Chapter 4

A_ = sp.Matrix([[-B/J, K_M/J], [-K_M/L, -R/L]]) # G
B_ = sp.Matrix([[0], [1/L]]) # H
C_ = sp.Matrix([[1, 0]]) # I
D_ = sp.Matrix([[0]]) # J
x = sp.Matrix([[W_J(t)], [i_L(t)]]) # x
u = sp.Matrix([[V_S(t)]]) # u
y = sp.Matrix([[W_J(t)]]) # y

The input and initial conditions can be encoded as follows:

u_subs = {V_S(t): 1}
ics = {W_J(0): 0, i_L(0): 0}

The set of first-order ODEs comprising the state equation can be defined as
follows:

odes = x.diff(t) - A_*x - B_*u
print(odes)[

�,� (C)
� + 3

3C
,�(C) − " 8!(C)

�
 ",� (C)

! + 3
3C
8!(C) + '8!(C)

! −
+((C)
!

]
x_sol = sp.dsolve(list(odes.subs(u_subs)), list(x), ics=ics)

The symbolic solutions for x(C) are lengthy expressions. Instead of printing
them, we will graph them for the following set of parameters:

params = {
R: 1, # (Ohms)
L: 0.1e-6, # (H)
K_M: 7, # (N·m/A)
B: 0.1e-6, # (N·m/(rad/s))
J: 2e-6, # (kg·m2)

}

Create a numerically evaluable version of each function as follows:

W_J_ = sp.lambdify(t, x_sol[0].rhs.subs(params), modules="numpy")
i_L_ = sp.lambdify(t, x_sol[1].rhs.subs(params), modules="numpy")

Graph each solution as follows:

t_ = np.linspace(0, 0.000002, 201)
fig, axs = plt.subplots(2, sharex=True)
axs[0].plot(t_, W_J_(t_))
axs[1].plot(t_, i_L_(t_))
axs[1].set_xlabel("Time (s)")
axs[0].set_ylabel("$\\Omega_J(t)$ (rad/s)")
axs[1].set_ylabel("$i_L(t)$ (A)")
plt.show()

Symbolic Analysis 135

0.0

0.1

0.2

Ω
�(C
)(
ra
d
/s
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s) 1e−6

0.00

0.25

8 !
(C
)(
A
)

Figure 4.7. The state response to a unit step voltage input.

The output equation is trivial in this case, yielding only the state variableΩ�(C),
for which we have already solved. Therefore, we have completed the analysis.

136 Chapter 4

4.8 Problems LINK
KB

Problem 4.1 LINK5Z Let B ∈C. Use SymPy to perform a partial fraction expansion on
the following expression:

(B + 2)(B + 10)
B4 + 8B3 + 117B2 + 610B + 500

.

Problem4.2 LINKIE Let G, 01 , 02 , 03 , 04 ∈R. Use SymPy to combine the cosine and sine
terms that share arguments into single sinusoids with phase shifts in the following
expression:

01 sin(G) + 02 cos(G) + 03 sin(2G) + 04 cos(2G)

Problem 4.3 LINKKR Consider the following equation, where G ∈C and 0, 1, 2 ∈R+,

0G2 + 1G + 2
G
+ 12 = 0.

Use SymPy to solve for G.

Problem 4.4 LINKG9 Let F, G, H, I ∈R. Consider the following system of equations:

8F − 6G + 5H + 4I = − 20

2H − 2I = 10

2F − G + 4H + I = 0

F + 4G − 2H + 8I = 4.

Use SymPy to solve the system for F, G, H, and I.

Problem 4.5 LINKIV Consider the truss shown in figure 4.8. Use a static analysis and
the method of joints to develop a solution for the force in each member ��� , ��� ,
etc., and the reaction forces using the sign convention that tension is positive and
compression is negative. The forces should be expressed in terms of the applied
force f� and the dimensions F and ℎ only. Write a program that solves for the forces
symbolically and answers the following questions:

a. Which members are in tension?
b. Which members are in compression?
c. Are there any members with 0 nominal force? If so, which?
d. Which member (or members) has (or have) the maximum compression?
e. Which member (or members) has (or have) the maximum tension?

https://engineering-computing.ricopic.one/kb
https://engineering-computing.ricopic.one/kb
https://engineering-computing.ricopic.one/5z
https://engineering-computing.ricopic.one/ie
https://engineering-computing.ricopic.one/kr
https://engineering-computing.ricopic.one/g9
https://engineering-computing.ricopic.one/iv

