4.8 Problems

Problem 4.1 ல5Z Let $s \in \mathbb{C}$. Use SymPy to perform a partial fraction expansion on the following expression:

$$
\frac{(s+2)(s+10)}{s^{4}+8 s^{3}+117 s^{2}+610 s+500}
$$

Problem 4.2 UIE Let $x, a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}$. Use SymPy to combine the cosine and sine terms that share arguments into single sinusoids with phase shifts in the following expression:

$$
a_{1} \sin (x)+a_{2} \cos (x)+a_{3} \sin (2 x)+a_{4} \cos (2 x)
$$

Problem 4.3 ๑KR Consider the following equation, where $x \in \mathbb{C}$ and $a, b, c \in \mathbb{R}_{+}$,

$$
a x^{2}+b x+\frac{c}{x}+b^{2}=0
$$

Use SymPy to solve for x.
Problem 4.4 ©G9 Let $w, x, y, z \in \mathbb{R}$. Consider the following system of equations:

$$
\begin{aligned}
& 8 w-6 x+5 y+4 z=-20 \\
& 2 y-2 z=10 \\
& 2 w-x+4 y+z=0 \\
& w+4 x-2 y+8 z=4 .
\end{aligned}
$$

Use SymPy to solve the system for w, x, y, and z.
Problem 4.5 〇IV Consider the truss shown in figure 4.8. Use a static analysis and the method of joints to develop a solution for the force in each member $F_{A C}, F_{A D}$, etc., and the reaction forces using the sign convention that tension is positive and compression is negative. The forces should be expressed in terms of the applied force f_{D} and the dimensions w and h only. Write a program that solves for the forces symbolically and answers the following questions:
a. Which members are in tension?
b. Which members are in compression?
c. Are there any members with 0 nominal force? If so, which?
d. Which member (or members) has (or have) the maximum compression?
e. Which member (or members) has (or have) the maximum tension?

Figure 4.8. A truss with pinned joints, supported by two hinges, with an applied load f_{D}.

Problem 4.6 〇49 You are designing the truss structure shown in figure 4.9, which is to support the hanging of an external load $f_{C}=-f_{C} \hat{j}$, where $f_{C}>0$. Your organization plans to offer customers the following options:

- Any width (i.e., $2 w$)
- A selection of maximum load magnitudes $L=f_{C} / \alpha \in \Gamma$, where $\Gamma=$ $\{1 \mathrm{kN}, 2 \mathrm{kN}, 4 \mathrm{kN}, 8 \mathrm{kN}, 16 \mathrm{kN}\}$, and where α is the factor of safety
As the designer, you are to develop a design curve for the dimension h versus half-width w for each maximum load $L \in \Gamma$, under the following design constraints:
- Minimize the dimension h
- The tension in all members is no more than a given T
- The compression in all members is no more than a given C
- The magnitude of the support force at pin A is no more than a given P_{A}
- The magnitude of the support force at pin D is no more than a given P_{D}

Use a static analysis and the method of joints to develop a solution for the force in each member $F_{A B}, F_{A C}$, etc., and the reaction forces using the sign convention that tension is positive and compression is negative. Create a Python function that returns h as a function of w for a given set of design parameters $\left\{T, C, P_{A}, P_{D}, \alpha, L\right\}$. Use the function to create a design curve h versus $2 w$ for each $L \in \Gamma$, maximum tension $T=81 \mathrm{kN}$, maximum compression $C=81 \mathrm{kN}$, maximum support A load $P_{A}=50 \mathrm{kN}$, maximum support D load $P_{D}=50 \mathrm{kN}$, and a factor of safety of $\alpha=5$.

Figure 4.9. A truss with pinned joints, supported by a hinge and a floating support, with an applied load f_{C}.

Problem 4.7 فw5 Consider an LTI system modeled by the state equation of the state-space model, equation (4.24a). A steady state of a system is defined as the state vector $x(t)$ after the effects of initial conditions have become relatively small. For a constant input $u(t)=\bar{u}$, the constant state \bar{x} toward which the system's response decays can be found by setting the time derivative vector $x^{\prime}(t)=\mathbf{0}$.

Write a Python function steady_state() that accepts the following arguments:

- A: A symbolic matrix representing A
- B: A symbolic matrix representing B
- u_const: A symbolic vector representing \bar{u}

The function should return $\mathrm{x}_{\mathbf{\prime}}$ const, a symbolic vector representing \bar{x}.
The steady-state output converges to \bar{y} the corresponding output equation of the state-space model, equation (4.24b). Write a second Python function steady_output () that accepts the following arguments:

- C: A symbolic matrix representing C
- D: A symbolic matrix representing D
- u_const: A symbolic vector representing \bar{u}
- x_{C} const: A symbolic vector representing \bar{x}

This function should return y_const, a symbolic vector representing \bar{y}.
Apply steady_state () and steady_output () to the state-space model of the circuit shown in figure 4.10, which includes a resistor with resistance R, an inductor with inductance L, and capacitor with capacitance C. The LTI system is represented by equation (4.24) with state, input, and output vectors

$$
x(t)=\left[\begin{array}{l}
v_{C}(t) \\
i_{L}(t)
\end{array}\right], \boldsymbol{u}(t)=\left[V_{S}\right], \boldsymbol{y}(t)=\left[\begin{array}{l}
v_{C}(t) \\
v_{L}(t)
\end{array}\right]
$$

and the following matrices:

$$
A=\left[\begin{array}{cc}
0 & 1 / C \\
-1 / L & -R / L
\end{array}\right], B=\left[\begin{array}{c}
0 \\
1 / L
\end{array}\right], C=\left[\begin{array}{cc}
1 & 0 \\
-1 & -R
\end{array}\right], D=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Furthermore, let the constant input vector be

$$
\bar{u}=\left[\overline{V_{S}}\right]
$$

for constant $\overline{V_{S}}$.

Figure 4.10. An RLC circuit with a voltage source $V_{S}(t)$.

Problem 4.8 ல8U Consider the electromechanical state-space model described in example 4.3. For a given set of parameters, input voltage, and initial conditions, the following vector-valued functions have been derived:

$$
\boldsymbol{F}=\left[\begin{array}{c}
\int_{0}^{t} v_{R}(t) d t \\
\int_{0}^{t} v_{L}(t) d t \\
\int_{0}^{t} \Omega_{B}(t) d t \\
\int_{0}^{t} \Omega_{J}(t) d t
\end{array}\right]=\left[\begin{array}{c}
\exp (-t) \\
\exp (-t) \\
1-\exp (-t) \\
1-\exp (-t)
\end{array}\right], \quad G=\left[\begin{array}{c}
\int_{0}^{t} i_{R}(t) d t \\
\int_{0}^{t} i_{L}(t) d t \\
\int_{0}^{t} T_{B}(t) d t \\
\int_{0}^{t} T_{J}(t) d t
\end{array}\right]=\left[\begin{array}{c}
\exp (-t) \\
\exp (-t) \\
1-\exp (-t) \\
\exp (-t)
\end{array}\right]
$$

The instantaneous power lossed or stored by each element is given by the following vector of products:

$$
\mathcal{P}(t)=\left[\begin{array}{c}
v_{R}(t) i_{R}(t) \\
v_{L}(t) i_{L}(t) \\
\Omega_{B}(t) T_{B}(t) \\
\Omega_{J}(t) T_{J}(t)
\end{array}\right] .
$$

The energy $\mathcal{E}(t)$ of the elements, then, is

$$
\mathcal{E}(t)=\int_{0}^{t} \mathcal{P}(t) d t
$$

Write a program that satisfies the following requirements:
a. It defines a function $\operatorname{power}(F, G)$ that returns the symbolic power vector $\mathcal{P}(t)$ from any inputs F and \boldsymbol{G}
b. It defines a function energy (F, G) that returns the symbolic energy $\mathcal{E}(t)$ from any inputs F and G (energy () should call power())
c. It tests the energy () on the specific F and G given above

Problem 4.9 ©FJ For the circuit and state-space model given in problem 4.7, use SymPy to solve for $x(t)$ and $y(t)$ given the following:

- A constant input voltage $V_{S}(t)=\overline{V_{S}}$
- Initial condition $x(0)=\mathbf{0}$

Substitute the following parameters into the solution for $\boldsymbol{y}(t)$ and create numerically evaluable functions of time for each variable in $\boldsymbol{y}(t)$:

$$
R=50 \Omega, L=10 \cdot 10^{-6} \mathrm{H}, C=1 \cdot 10^{-9} \mathrm{~F}, \overline{V_{S}}=10 \mathrm{~V}
$$

Plot the outputs in $y(t)$ as functions of time, making sure to choose a range of time over which the response is best presented. Hint: An appropriate amount of time is on the scale of microseconds.

5 Numerical Analysis I: Techniques

asdf

5.1 Problems

Problem 5.1 ఏM2 asdf

