
Engineering Mathematics

Engineering Mathematics

Rico A.R. Picone

© 2024 Rico A.R. Picone

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the author.

Contents

1 Mathematics 1
1.1 Truth 1
1.2 The Foundations of Mathematics 8
1.3 Problems 13

2 Mathematical Reasoning, Logic, and Set Theory 15
2.1 Introduction to Set Theory 15
2.2 Logical Connectives and Quantifiers 17
2.3 Problems 19

3 Probability 21
3.1 Probability and Measurement 21
3.2 Basic Probability Theory 22
3.3 Independence and Conditional Probability 23
3.4 Bayes’ Theorem 25
3.5 Random Variables 29
3.6 Probability Density and Mass Functions 31
3.7 Expectation 35
3.8 Central Moments 38
3.9 Transforming Random Variables 39
3.10 Multivariate Probability and Correlation 46
3.11 Problems 56

4 Statistics 57
4.1 Populations, Samples, and Machine Learning 58
4.2 Estimation of Sample Mean and Variance 59
4.3 Confidence 68
4.4 Student Confidence 77

vi Contents

4.5 Regression 80
4.6 Problems 85

5 Vector Calculus 89
5.1 Divergence, Surface Integrals, and Flux 90
5.2 Curl, Line Integrals, and Circulation 96
5.3 Gradient 103
5.4 Stokes and Divergence Theorems 110
5.5 Problems 112

6 Fourier and Orthogonality 115
6.1 Fourier Series 115
6.2 Fourier Transform 119
6.3 Generalized Fourier Series and Orthogonality 128
6.4 Problems 130

7 Partial Differential Equations 137
7.1 Classifying PDEs 138
7.2 Sturm-Liouville Problems 140
7.3 PDE Solution by Separation of Variables 144
7.4 The 1D Wave Equation 149
7.5 Problems 156

8 Optimization 161
8.1 Gradient Descent 161
8.2 Constrained Linear Optimization 170
8.3 The Simplex Algorithm 172
8.4 Problems 177

9 Nonlinear Analysis 179
9.1 Nonlinear State-Space Models 180
9.2 Nonlinear System Characteristics 180
9.3 Simulating Nonlinear Systems 183
9.4 Problems 185

A Distribution Tables 187
A.1 Gaussian Distribution Table 187
A.2 Student’s T-Distribution Table 190

B Fourier and Laplace Tables 191
B.1 Laplace Transforms 191

Contents vii

B.2 Fourier Transforms 192

C Mathematics Reference 195
C.1 Quadratic Forms 195
C.2 Trigonometry 195
C.3 Matrix Inverses 199
C.4 Euler’s Formulas 199
C.5 Laplace Transforms 200

Bibliography 201

1 Mathematics LINK
66

This chapter describes the foundations of mathematics and why it is so useful to
engineers.

1.1 Truth LINK
NB

Before we can discuss mathematical truth, we should begin with a
discussion of truth itself.1 It is important to note that this is obvi-
ously extremely incomplete. My aim is to give a sense of the subject via brutal
(mis)abbreviation.
Of course, the study of truth cannot but be entangled with the study of the world

as such (metaphysics) and of knowledge (epistemology). Some of the following
theories presuppose or imply a certain metaphysical and/or epistemological theory,
but which these are is controversial.

1.1.1 Neo-Classical Theories of Truth

The neo-classical theories of truth take for granted that there is truth and attempt
to explain what its precise nature is (Glanzberg 2018). What are provided here are
modern understandings of theories developed primarily in the early 20th century.

1.1.1.1 The Correspondence Theory A version of what is called the correspon-
dence theory of truth is the following.

A proposition is true iff there is an existing entity in the world that corresponds
with it.

Such existing entities are called facts. Facts are relational in that their parts (e.g.,
subject, predicate, etc.) are related in a certain way.
Under this theory, then, if a proposition does not correspond to a fact, it is false.
This theory of truth is rather intuitive and consistently popular (David 2016).

1. For much of this lecture I rely on the thorough overview of (Glanzberg 2018).

https://math.ricopic.one/66
https://math.ricopic.one/66
https://math.ricopic.one/nb
https://math.ricopic.one/nb

2 Chapter 1

1.1.1.2 The Coherence Theory The coherence theory of truth is adamant that the
truth of any given proposition is only as good as its holistic system of propositions.2

This includes (but typically goes beyond) a requirement for consistency of a given
proposition with the whole and the self-consistency of the whole, itself—sometimes
called coherence.
For parallelism, let’s attempt a succinct formulation of this theory, cast in terms

of propositions.

A proposition is true iff it is has coherence with a system of propositions.

Note that this has no reference to facts, whatsoever. However, it need not
necessarily preclude them.

1.1.1.3 The Pragmatic Theory Of the neo-classical theories of truth, this is
probably the least agreed upon as having a single clear statement (Glanzberg
2018). However, as with pragmatism in general,3 the pragmatic truth is oriented
practically.
Perhaps the most important aspect of this theory is that it is thoroughly a corre-

spondence theory, agreeing that true propositions are those that correspond to the
world. However, there is a different focus here that differentiates it from correspon-
dence theory, proper: it values as more true that which has some sort of practical
use in human life.
We’ll try to summarize pragmatism in two slogans with slightly different

emphases; here’s the first, again cast in propositional parallel.

A proposition is true iff it works.4

Now, there are two ways this can be understood: (a) the proposition “works” in
that it empirically corresponds to the world or (b) the proposition “works” in that it
has an effect that some agent intends. The former is pretty standard correspondence
theory. The latter is new and fairly obviously has ethical implications, especially
today.
Let us turn to a second formulation.

A proposition is true if it corresponds with a process of inquiry.5

This has two interesting facets: (a) an agent’s active inquiry creates truth and (b)
it is a sort of correspondence theory that requires a correspondence of a proposition

2. This is typically put in terms of “beliefs” or “judgments,” but for brevity and parallelism I have cast it
in terms of propositions. It is to this theory I have probably committed the most violence.

3. Pragmatism was an American philosophical movement of the early 20th century that valued the
success of “practical” application of theories. For an introduction, see (Legg and Hookway 2019).

4. This is especially congruent with the work of William James (Legg and Hookway 2019).

5. This is especially congruent with the work of Charles Sanders Peirce (Legg and Hookway 2019).

Mathematics 3

with a process of inquiry, not, as in the correspondence theory, with a fact about the
world. The latter has shades of both correspondence theory and coherence theory.

1.1.2 The Picture Theory

Before we delve into this theory, we must take a moment to clarify some
terminology.

1.1.2.1 States of Affairs and Facts When discussing the correspondence theory,
we have used the term fact to mean an actual state of things in the world. A problem
arises in the correspondence theory, here. It says that a proposition is true iff there
is a fact that corresponds with it. What of a negative proposition like “there are no
cows in Antarctica”? We would seem to need a corresponding “negative fact” in
the world to make this true. If a fact is taken to be composed of a complex of actual
objects and relations, it is hard to imagine such facts.6

Furthermore, if a proposition is true, it seems that it is the corresponding fact that
makes it so; what, then, makes a proposition false, since there is no fact to support
the falsity? (Textor 2016)
And what of nonsense? There are some propositions like “there is a round cube”

that are neither true nor false. However, the preceding correspondence theory
cannot differentiate between false and nonsensical propositions.
A state of affairs is something possible that may or may not be actual (Textor

2016). If a state of affairs is actual, it is said to obtain. The picture theory will make
central this concept instead of that of the fact.

1.1.2.2 The Picture Theory of Meaning (And Truth) The picture theory of mean-
ing uses the analogy of the model or picture to explain the meaningfulness of
propositions.7

A proposition names possible objects and arranges these names to correspond to
a state of affairs.

See figure 1.1. This also allows for an easy account of truth, falsity, and nonsense.

6. But (Barker and Jago 2012) have attempted just that.

7. See (Wittgenstein 1922), (Biletzki and Matar 2018), (glock2016), and (Dolby 2016).

4 Chapter 1

Figure 1.1. A representation of the picture theory.

Nonsense A sentence that appears to be a proposition is actually not if the
arrangement of named objects is impossible. Such a sentence is simply
nonsense.

Truth A proposition is true if the state of affairs it depicts obtains.
Falsity A proposition is false if the state of affairs it depicts does not obtain.

Now, some (Glock 2006) argue this is a correspondence theory and others (Dolby
2016) that it is not. In any case, it certainly solves some issues that have plagued the
correspondence theory.

1.1.2.3 “What Cannot Be Said Must Be Shown” Something the picture the-
ory does is declare a limit on what can meaningfully be said. A proposition (as
defined above)must be potentially true or false. Therefore, something that cannot be
false (something necessarily true) cannot be a proposition (Dolby 2016). And there
are certain things that are necessarily true for language itself to be meaningful—
paradigmatically, the logical structure of the world. What a proposition does, then,
is show, via its own logical structure, the necessary (for there to be meaningful
propositions at all) logical structure of the world.8

An interesting feature of this perspective is that it opens up language itself to
analysis and limitation.9 And, furthermore, it suggests that the set of what is, is
smaller than the set of what can be meaningfully spoken about.

8. See, also, (Žižek 2012), pp. 25-26, from whom I stole the section title.

9. This was one of the contributions to the “linguistic turn” (Wikipedia 2019f) of philosophy in the early

20th century.

Mathematics 5

1.1.3 The Relativity of Truth

Each subject (i.e., agent) in the world, with their propositions, has a perspective: a
given moment, a given place, an historical-cultural-linguistic situation. At the very
least, the truth of propositions must account for this. Just how a theory of truth
should do so is a matter of significant debate (Baghramian and Carter 2019).
Some go so far as to be skeptical about truth (Klein 2015), regarding it to be

entirely impossible. Others say that while a proposition may or may not be true,
we could never come to know this.
Often underlying this conversation is the question of there being a commonworld

in which we all participate, and, if so, whether or not we can properly represent
this world in language such that multiple subjects could come to justifiably agree
or disagree on the truth of a proposition. If every proposition is so relative that it is
relevant to only the proposer, truth would seem of little value. On the other hand,
if truth is understood to be “objective”—independent of subjective perspective—a
number of objections can be made (Baghramian and Carter 2019), such as that there
is no non-subjective perspective from which to judge truth.

1.1.4 Other Ideas about Truth

There are too many credible ideas about truth to attempt a reasonable summary;
however, I will attempt to highlight a few important ones.

1.1.4.1 Formal Methods A set of tools was developed for exploring theories of
truth, especially correspondence theories.10 Focus turned from beliefs to sentences,
which are akin to propositions. (Recall that the above theories have already been
recast in the more modern language of propositions.) Another aspect of these
sentences under consideration is that they begin to be taken as interpreted sentences:
they are already have meaning.
Beyond this, several technical apparatus are introduced that formalize criteria

for truth. For instance, a sentence is given a sign). A need arises to distinguish
between the quotation of sentence) and the unqoted sentence), which is then
given the quasi-quotation notation p)q. For instance, let) stand for snow is white;
then)→ snow is white and p)q→ ‘snow is white’. Tarski introduces Convention T,
which states that for a fixed language Rwith fully interpreted sentences, (Glanzberg
2018)

An adequate theory of truth for Rmust imply for each sentence) of R
p)q is true if and only if).

Using the same example, then,

10. Especially notable here is the work of Alfred Tarski in the mid-20th century.

6 Chapter 1

‘snow is white’ if and only if snow is white.

Convention T states a general rule for the adequacy of a theory of truth and is
used in several contemporary theories.
We can see that these formal methods get quite technical and fun! For more, see

(Hodges 2018b; Gómez-Torrente 2019; Hylton and Kemp 2019).

1.1.4.2 Deflationary Theories Deflationary theories of truth try to minimize
or eliminate altogether the concept of or use of the term ‘truth’. For instance, the
redundancy theory claim that (Glanzberg 2018):

To assert that p)q is true is just to assert that).

Therefore, we can eliminate the use of ‘is true’.
For more of less, see (Stoljar and Damnjanovic 2014).

1.1.4.3 Language It is important to recognize that language mediates truth; that
is, truth is embedded in language. The way language in general affects theories
of truth has been studied extensively. For instance, whether the truth-bearer is a
belief or a proposition or a sentence—or something else—has been much discussed.
The importance of themeaning of truth-bearers like sentences has played another
large role. Theories of meaning, like the picture theory presented above, are often
closely intertwined with theories of truth.
One of the most popular theories of meaning is called the theory of use:

For a large class of cases of the employment of the word “meaning” – though not
for all – this word can be explained in this way: the meaning of a word is its use
in the language. (Wittgenstein, Hacker, and Schulte 2010)

This theory is accompanied by the concept of language-games, which are loosely
defined as rule-based contexts within which sentences have uses. The idea is that
the meaning of a given sentence is its use in a network of meaning that is constantly
evolving. This view tends to be understood as deflationary or relativistic about
truth.

1.1.4.4 Metaphysical and Epistemological Considerations We began with the
recognition that truth is intertwined with metaphysics and epistemology. Let’s
consider a few such topics.
The first is metaphysical realism, which claims that there is a world existing

objectively: independently of how we think about or describe it. This “realism”
tends to be closely tied to, yet distinct from, scientific realism, which goes further,
claiming the world is “actually” as science describes, independently of the scientific
descriptions (e.g., there are actual objects corresponding to the phenomena we call
atoms, molecules, light particles, etc.).

Mathematics 7

There have been many challenges to the realist claim (for some recent versions,
see (Khlentzos 2016)) put forth by what is broadly called anti-realism. These vary,
but often challenge the ability of realists to properly link language to supposed
objects in the world.
Metaphysical idealism has been characterized as claiming that “mind” or “sub-

jectivity” generate or completely compose the world, which has no being outside
mind. Epistemological idealism, on the other hand, while perhaps conceding that
there is a world independent of mind, claims all knowledge of the world is created
through mind and for mind and therefore can never escape a sort of mind-world
gap.11 This epistemological idealism has been highly influential since the work
of Immanuel Kant (Kant, Guyer, and Wood 1999) in the late 18th century, which
ushered in the idea of the noumenal world in-itself and the phenomenal world,
which is how the noumenal world presents to us. Many have held that phenomena
can be known through inquiry, whereas noumena are inaccessible. Furthermore,
what can be known is restricted by the categories pre-existent in the knower.
Another approach, taken by Georg Wilhelm Friedrich Hegel (Redding 2018)

and other German idealists following Kant, is to reframe reality as thoroughly
integrating subjectivity (Hegel and Miller 1998; Žižek 2012); that is, “everything
turns on grasping and expressing the True, not only as Substance, but equally as
Subject.” A subject’s proposition is true inasmuch as it corresponds with its Notion
(approximately: the idea or meaning for the subject). Some hold that this idealism
is compatible with a sort of metaphysical realism, at least as far as understanding is
not independent of but rather beholden to reality (Žižek 2012; p. 906 ff.).
Clearly, all these ideas have many implications for theories of truth and vice

versa.

1.1.5 Where This Leaves Us

The truth is hard. What may at first appear to be a simple concept becomes com-
plex upon analysis. It is important to recognize that we have only sampled some
highlights of the theories of truth. I recommend further study of this fascinating
topic.
Despite the difficulties of finding definitive grounds for understanding truth, we

are faced with the task of provisionally forging ahead. Much of what follows in the
study of mathematics makes certain implicit and explicit assumptions about truth.
However, we have found that the foundations of these assumptionsmay themselves
be problematic. It is my contention that, despite the lack of clear foundations, it is
still worth studying engineering analysis, its mathematical foundations, and the foundations

11. These definitions are explicated by (Guyer and Horstmann 2018).

8 Chapter 1

of truth itself.My justification for this claim is that I find the utility and the beauty
of this study highly rewarding.

1.2 The Foundations of Mathematics LINK
G4

Mathematics has long been considered exemplary for establishing
truth. Primarily, it uses a method that begins with axioms—unproven
propositions that include undefined terms—and uses logical deduction to prove
other propositions (theorems): to show that they are necessarily true if the axioms
are.
It may seem obvious that truth established in this way would always be relative

to the truth of the axioms, but throughout history this footnote was often obscured
by the “obvious” or “intuitive” universal truth of the axioms.12 For instance, Euclid
(Wikipedia 2019c) founded geometry—the study of mathematical objects tradi-
tionally considered to represent physical space, like points, lines, etc.—on axioms
thought so solid that it was not until the early 19th century that Carl Friedrich
Gauss (Wikipedia 2019b) and others recognized this was only one among many
possible geometries (Kline 1982) resting on different axioms. Furthermore,Aristotle
(Shields 2016) had acknowledged that reasoning must begin with undefined terms;
however, even Euclid (presumably aware of Aristotle’s work) seemed to forget
this and provided definitions, obscuring the foundations of his work and starting
mathematics on a path that for over 2,000 years would forget its own relativity
(Kline 1982; p. 101-2).
The foundations of Euclidwere even shakier than itsmurky starting point: several

unstated axioms were used in proofs and some proofs were otherwise erroneous.
However, for two millennia, mathematics was seen as the field wherein truth could
be established beyond doubt.

1.2.1 Algebra Ex nihilo

Although not much work new geometry appeared during this period, the field of
algebra (Wikipedia 2019a)—the study of manipulations of symbols standing for
numbers in general—began with no axiomatic foundation whatsoever. The Greeks
had a notion of rational numbers, ratios of natural numbers (positive integers),
and it was known that many solutions to algebraic equations were irrational (could
not be expressed as a ratio of integers). But these irrational numbers, like virtually
everything else in algebra, were gradually accepted because they were so useful in
solving practical problems (they could be approximated by rational numbers and
this seemed good enough). The rules of basic arithmetic were accepted as applying

12. Throughout this section, for the history of mathematics I rely heavily on (Kline 1982).

https://math.ricopic.one/g4
https://math.ricopic.one/g4

Mathematics 9

to these and other forms of new numbers that arose in algebraic solutions: negative,
imaginary, and complex numbers.

1.2.2 The Application of Mathematics to Science

During this time, mathematics was being applied to optics and astronomy. Sir
Isaac Newton then built calculus upon algebra, applying it to what is now known
asNewtonian mechanics, which was really more the product of Leonhard Euler
(Smith 2008; Wikipedia 2019e). Calculus introduced its own dubious operations,
but the success of mechanics in describing and predicting physical phenomena was
astounding. Mathematics was hailed as the language of God (later, Nature).

1.2.3 The Rigorization of Mathematics

It was not until Gauss created non-Euclidean geometry, in which Euclid’s were
shown to be one of many possible axioms compatible with the world, and William
Rowan Hamilton (Wikipedia 2019k) created quaternions (Wikipedia 2019i), a num-
ber system in which multiplication is noncommunicative, that it became apparent
something was fundamentally wrong with the way truth in mathematics had been
understood. This started a period of rigorization in mathematics that set about
axiomatizing and proving 19th centurymathematics. This included the development
of symbolic logic, which aided in the process of deductive reasoning.
An aspect of this rigorization is that mathematicians came to terms with the

axioms that include undefined terms. For instance, a “point” might be such an
undefined term in an axiom. Amathematical model is what we create when we
attach these undefined terms to objects, which can be anything consistent with
the axioms.13 The system that results from proving theorems would then apply to
anything “properly” described by the axioms. So two masses might be assigned
“points” in a Euclidean geometric space, from which we could be confident that,
for instance, the “distance” between these masses is the Euclidean norm of the
line drawn between the points. It could be said, then, that a “point” in Euclidean
geometry is implicitly defined by its axioms and theorems, and nothing else. That
is, mathematical objects are not inherently tied to the physical objects to which we
tend to apply them. Euclidean geometry is not the study of physical space, as it was
long considered—it is the study of the objects implicitly defined by its axioms and
theorems.

13. The branch of mathematics called model theory concerns itself with general types of models that can
be made from a given formal system, like an axiomatic mathematical system. For more on model theory,
see (Hodges 2018a). It is noteworthy that the engineering/science use of the term “mathematical model”
is only loosely a “model” in the sense of model theory.

10 Chapter 1

1.2.4 The Foundations of Mathematics Are Built

The building of themodern foundationsmathematics beganwith clear axioms, solid
reasoning (with symbolic logic), and lofty yet seemingly attainable goals: prove
theorems to support the already ubiquitous mathematical techniques in geometry,
algebra, and calculus from axioms; furthermore, prove that these axioms (and things
they imply) do not contradict each other, i.e., are consistent, and that the axioms
are not results of each other (one that can be derived from others is a theorem, not
an axiom).
Set theory is a type of formal axiomatic system that all modern mathematics is

expressed with, so set theory is often called the foundation of mathematics (Bagaria
2019). We will study the basics in (ch:set_theory). The primary objects in set theory
are sets: informally, collections of mathematical objects. There is not just one a
single set of axioms that is used as the foundation of all mathematics for reasons
will review in amoment. However, themost popular set theory isZermelo-Fraenkel

set theory with the axiom of choice (ZFC). The axioms of ZF sans C are as follows.
(Bagaria 2019)

Extensionality If two sets � and � have the same elements, then they are equal.
Empty set There exists a set, denoted by ∅ and called the empty set, which has no

elements.
Pair Given any sets � and �, there exists a set, denoted by {�, �}, which contains

� and � as its only elements. In particular, there exists the set {�} which has
� as its only element.

Power set For every set � there exists a set, denoted by P(�) and called the power
set of �, whose elements are all the subsets of �.

Union For every set �, there exists a set, denoted by
⋃
� and called the union of

�, whose elements are all the elements of the elements of �.
Infinity There exists an infinite set. In particular, there exists a set / that contains

∅ and such that if � ∈ /, then⋃{�, {�}} ∈ /.
Separation For every set � and every given property, there is a set containing

exactly the elements of � that have that property. A property is given by a
formula ! of the first-order language of set theory. Thus, separation is not a
single axiom but an axiom schema, that is, an infinite list of axioms, one for
each formula !.

Replacement For every given definable function with domain a set �, there is a
set whose elements are all the values of the function.

ZFC also has the axiom of choice. (Bagaria 2019)

Choice For every set � of pairwise-disjoint non-empty sets, there exists a set that
contains exactly one element from each set in �.

Mathematics 11

1.2.5 The Foundations Have Cracks

The foundationalists’ goal was to prove that some set of axioms from which all
of mathematics can be derived is both consistent (contains no contradictions) and
complete (every true statement is provable). Thework of Kurt Gödel (Kennedy 2018)
in the mid 20th century shattered this dream by proving in his first incompleteness

theorem that any consistent formal systemwithinwhich one can do some amount of
basic arithmetic is incomplete! His argument is worth reviewing (see (Raatikainen
2018)), but at its heart is anundecidable statement like “This sentence is unprovable.”
Let * stand for this statement. If it is true it is unprovable. If it is provable it is
false. Therefore, it is true iff it is provable. Then he shows that if a statement � that
essentially says “arithmetic is consistent” is provable, then so is the undecidable
statement* . But if* is to be consistent, it cannot be provable, and, therefore neither
can � be provable!
This is problematic. It tells us virtually any conceivable axiomatic foundation

of mathematics is incomplete. If one is complete, it is inconsistent (and therefore
worthless). One problem this introduces is that a true theorem may be impossible
to prove; but, it turns out, we can never know that in advance of its proof if it is
provable.
But it gets worse: Gödel’s second incompleteness theorem shows that such sys-

tems cannot even be shown to be consistent! This means, at any moment, someone
could find an inconsistency in mathematics, and not only would we lose some of
the theorems: we would lose them all. This is because, by what is called thematerial

implication (Kline 1982; pp. 187-8 264), if one contradiction can be found, every
proposition can be proven from it. And if this is the case, all (even proven) theorems
in the system would be suspect.
Even though no contradiction has yet appeared in ZFC, its axiom of choice,

which is required for the proof of most of what has thus far been proven, generates
the Banach-Tarski paradox that says a sphere of diameter G can be partitioned
into a finite number of pieces and recombined to form two spheres of diameter G.
Troubling, to say the least! Attempts were made for a while to eliminate the use of
the axiom of choice, but our buddy Gödel later proved that if ZF is consistent, so is
ZFC (p. 267).

12 Chapter 1

1.2.6 Mathematics Is Considered Empirical

Since its inception, mathematics has been applied extensively to the modeling of the
world. Despite its cracked foundations, it has striking utility. Many recent leading
minds of mathematics, philosophy, and science suggest we treat mathematics as
empirical, like any science, subject to its success in describing and predicting events
in the world. As (Kline 1982) summarizes,

The upshot […] is that sound mathematics must be determined not by any one
foundation which may some day prove to be right. The “correctness” of math-
ematics must be judged by its application to the physical world. Mathematics
is an empirical science much as Newtonian mechanics. It is correct only to the
extent that it works and when it does not, it must be modified. It is not a priori
knowledge even though it was so regarded for two thousand years. It is not
absolute or unchangeable.

Mathematics 13

1.3 Problems LINK
K9

https://math.ricopic.one/k9
https://math.ricopic.one/k9

2 Mathematical Reasoning, Logic, and Set Theory LINK
JT

In order to communicate mathematical ideas effectively, formal languages have
been developed within which logic, i.e. deductive (mathematical) reasoning, can
proceed. Propositions are statements that can be either true > or false ⊥. Axiomatic
systems begin with statements (axioms) assumed true. Theorems are proven by
deduction. In many forms of logic, like propositional calculus (Wikipedia 2019h),
compound propositions are constructed via logical connectives like “and” and “or”
of atomic propositions (see section 2.2). In others, like first-order logic (Wikipedia
2019d), there are also logical quantifiers like “for every” and “there exists.”
The mathematical objects and operations about which most propositions are

made are expressed in terms of set theory, which was introduced in section 1.2 and
will be expanded upon in section 2.1. We can say that mathematical reasoning is
comprised of mathematical objects and operations expressed in set theory and logic
allows us to reason therewith.

2.1 Introduction to Set Theory LINK
BW

Set theory is the language of the modern foundation of mathemat-
ics, as discussed in chapter 1. It is unsurprising, then, that it arises
throughout the study ofmathematics.Wewill use set theory extensively in chapter 3
on probability theory.
The axioms of ZFC set theory were introduced in chapter 1. Instead of proceeding

in the pure mathematics way of introducing and proving theorems, we will opt
for a more applied approach in which we begin with some simple definitions and
include basic operations. A more thorough and still readable treatment is given by
(Ciesielski 1997) and a very gentle version by (Enderton 1977).
A set is a collection of objects. Set theory gives us a way to describe these collec-

tions. Often, the objects in a set are numbers or sets of numbers. However, a set
could represent collections of zebras and trees and hairballs. For instance, here are

https://math.ricopic.one/jt
https://math.ricopic.one/jt
https://math.ricopic.one/bw
https://math.ricopic.one/bw

16 Chapter 2

some sets:

{1, 5,�} {zebra named “Calvin”, a burnt cheeto} {{1, 2}, {5, hippo, 7}, 62}.
A field is a set with special structure. This structure is provided by the addition

(+) andmultiplication (×) operators and their inverses subtraction (−) and division
(÷). The quintessential example of a field is the set of real numbers R, which admits
these operators, making it a field. The reals R, the complex numbers C, the integers
Z, and the natural numbers1 N are the fields we typically consider.
Set membership is the belonging of an object to a set. It is denoted with the

symbol ∈, which can be read “is an element of,” for element G and set -:
G ∈-.

For instance, we might say 7 ∈ {1, 7, 2} or 4∉ {1, 7, 2}. Or, we might declare that 0
is a real number by stating: G ∈R.
Set operations can be used to construct new sets from established sets. We

consider a few common set operations, now.
The union ∪ of sets is the set containing all the elements of the original sets (no

repetition allowed). The union of sets � and � is denoted �∪ �. For instance, let
�= {1, 2, 3} and �= {−1, 3}; then

�∪ �= {1, 2, 3,−1}.
The intersection ∩ of sets is a set containing the elements common to all the

original sets. The intersection of sets � and � is denoted �∩ �. For instance, let
�= {1, 2, 3} and �= {2, 3, 4}; then

�∩ �= {2, 3}.
If two sets have no elements in common, the intersection is the empty set ∅= {},

the unique set with no elements.
The set difference of two sets � and � is the set of elements in � that aren’t also

in �. It is denoted � \ �. For instance, let �= {1, 2, 3} and �= {2, 3, 4}. Then
� \ �= {1} � \�= {4}.

A subset ⊆ of a set is a set, the elements of which are contained in the original set.
If the two sets are equal, one is still considered a subset of the other. We call a subset
that is not equal to the other set a proper subset ⊂. For instance, let �= {1, 2, 3} and
�= {1, 2}. Then

� ⊆ � � ⊂ � � ⊆ �.

1.When the natural numbers include zero, we write N0.

Mathematical Reasoning, Logic, and Set Theory 17

The complement of a subset is a set of elements of the original set that aren’t in
the subset. For instance, if � ⊆ �, then the complement of �, denoted � is

�=� \ �.
The cartesian product of two sets � and � is denoted �× � and is the set of all

ordered pairs (0, 1)where 0 ∈� and 1 ∈ �. It’s worthwhile considering the following
notation for this definition:

�× �= {(0, 1) | 0 ∈� and 1 ∈ �}
which means “the cartesian product of � and � is the ordered pair (0, 1) such that
0 ∈� and 1 ∈ �” in set-builder notation (Wikipedia 2019j).
Let � and � be sets. Amap or function 5 from � to � is an assignment of some

element 0 ∈� to each element 1 ∈ �. The function is denoted 5 :�→ � and we say
that 5 maps each element 0 ∈� to an element 5 (0) ∈ � called the value of 0 under 5 ,
or 0 ↦→ 5 (0). We say that 5 has domain � and codomain �. The image of 5 is the
subset of its codomain � that contains the values of all elements mapped by 5 from
its domain �.

2.2 Logical Connectives and Quantifiers LINK
MB

In order to make compound propositions, we need to define logical
connectives. In order to specify quantities of variables, we need to
define logical quantifiers. The following is a form of first-order logic (Wikipedia
2019d).

2.2.1 Logical Connectives

A proposition can be either true > and false ⊥. When it does not contain a logical
connective, it is called an atomistic proposition. To combine propositions into a
compound proposition, we require logical connectives. They are not (¬), and (∧),
and or (∨). Table 2.1 is a truth table for a number of connectives.

Table 2.1: a truth table for logical connectives. The first two columns are the truth values
of propositions ? and @; the rest are outputs.

not and or nand nor xor xnor
? @ ¬? ? ∧ @ ? ∨ @ ? ↑ @ ? ↓ @ ? Y @ ?⇔ @

⊥ ⊥ > ⊥ ⊥ > > ⊥ >
⊥ > > ⊥ > > ⊥ > ⊥
> ⊥ ⊥ ⊥ > > ⊥ > ⊥
> > ⊥ > > ⊥ ⊥ ⊥ >

https://math.ricopic.one/mb
https://math.ricopic.one/mb

18 Chapter 2

2.2.2 Quantifiers

Logical quantifiers allow us to indicate the quantity of a variable. The universal
quantifier symbol ∀means “for all”. For instance, let � be a set; then ∀0 ∈�means
“for all elements in �” and gives this quantity variable 0. The existential quantifier
∃means “there exists at least one” or “for some”. For instance, let � be a set; then
∃0 ∈�… means “there exists at least one element 0 in � ….”

Mathematical Reasoning, Logic, and Set Theory 19

2.3 Problems LINK
H4

Problem 2.1 LINKHARDHAT For the following, write the set described in set-builder
notation.
a. �= {2, 3, 5, 9, 17, 33, · · · }.
b. � is the set of integers divisible by 11.
c. � = {1/3, 1/4, 1/5, · · · }.
d. � is the set of reals between −3 and 42.

Problem 2.2 LINKANATOMY Let x , y ∈R= . Prove the Cauchy-Schwarz Inequality
|x · y | ≤ ‖x‖‖y‖. (2.1)

Hint: you may find the geometric definition of the dot product helpful.

Problem 2.3 LINKACOUSTIC Let x ∈R= . Prove that
x · x = ‖x‖2. (2.2)

Hint: you may find the geometric definition of the dot product helpful.

Problem 2.4 LINKSUSANNA Let x , y ∈R= . Prove the Triangle Inequality
‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.3)

Hint: you may find the Cauchy-Schwarz Inequality helpful.

https://math.ricopic.one/h4
https://math.ricopic.one/h4
https://math.ricopic.one/hardhat
https://math.ricopic.one/anatomy
https://math.ricopic.one/acoustic
https://math.ricopic.one/susanna

3 Probability and Random Processes LINK
1B

This chapter introduces probability and random variables. Important in itself, it
will also provide the basis for statistics, described in chapter 4.

3.1 Probability and Measurement LINK
FT

Probability theory is a well-defined branch of mathematics. Andrey
Kolmogorov described a set of axioms in 1933 that are still in use
today as the foundation of probability theory.1

We will implicitly use these axioms in our analysis. The interpretation of proba-
bility is a contentious matter. Some believe probability quantifies the frequency of
the occurrence of some event that is repeated in a large number of trials. Others
believe it quantifies the state of our knowledge or belief that some event will occur.
In experiments, our measurements are tightly coupled to probability. This is

apparent in the questions we ask. Here are some examples.

1. How common is a given event?
2. What is the probability we will reject a good theory based on experimental

results?
3. How repeatable are the results?
4. How confident are we in the results?
5. What is the character of the fluctuations and drift in the data?
6. How much data do we need?

1. For a good introduction to probability theory, see (Ash 2008) or (Jaynes et al. 2003).

https://math.ricopic.one/1b
https://math.ricopic.one/1b
https://math.ricopic.one/ft
https://math.ricopic.one/ft

22 Chapter 3

3.2 Basic Probability Theory LINK
9K

The mathematical model for a class of measurements is called the
probability space and is composed of a mathematical triple of a sam-
ple space Ω, �-algebra ℱ , and probability measure %, typically denoted (Ω, ℱ , %),
each of which we will consider in turn (Wikipedia 2019g).
The sample spaceΩ of an experiment is the set representing all possible outcomes

of the experiment. If a coin is flipped, the sample space is Ω= {�,)}, where � is
heads and) is tails. If a coin is flipped twice, the sample space could be

Ω= {��, �),)�,))}.
However, the same experiment can have different sample spaces. For instance, for two

coin flips, we could also choose

Ω= {the flips are the same, the flips are different}.
We base our choice of Ω on the problem at hand.
An event is a subset of the sample space. That is, an event corresponds to a

yes-or-no question about the experiment. For instance, event � (remember: � ⊆Ω)
in the coin flipping experiment (two flips) might be �= {�),)�}. � is an event
that corresponds to the question, “Is the second flip different than the first?” � is
the event for which the answer is “yes.”

3.2.1 Algebra of Events

Because events are sets, we can perform the usual set operations with them.

Example 3.1

Consider a toss of a single die. We choose the sample space to be Ω=

{1, 2, 3, 4, 5, 6}. Let the following define events.
�≡ {the result is even}= {2, 4, 6}
�≡ {the result is greater than 2}= {3, 4, 5, 6}.

Find the following event combinations:

�∪ � �∩ � � \ � � \� � \ �.

�∪ �= {2, 3, 4, 5, 6} (even or greater than 2)

�∩ �= {4, 6} (even and greater than 2)

� \ �= {2} (even but not greater than 2)

� \�= {3, 5} (greater than two and odd)

� \ �= {1, 3, 5} \ {3, 4, 5, 6} (not even and not greater than 2).

https://math.ricopic.one/9k
https://math.ricopic.one/9k

Probability 23

The �-algebra ℱ is the collection of events of interest. Often, ℱ is the set of all
possible events given a sample spaceΩ, which is just the power set ofΩ (Wikipedia
2019g). When referring to an event, we often state that it is an element of ℱ . For
instance, we might say an event � ∈ ℱ .
We’re finally ready to assign probabilities to events. We define the probability

measure % :ℱ →[0, 1] to be a function satisfying the following conditions.
1. For every event � ∈ ℱ , the probability measure of � is greater than or equal

to zero—i.e. %(�) ≥ 0.
2. If an event is the entire sample space, its probability measure is unity—i.e. if
�=Ω, %(�)= 1.

3. If events �1 , �2 , · · · are disjoint sets (no elements in common), then %(�1 ∪
�2 ∪ · · ·)=%(�1) +%(�2) + · · · .

We conclude the basics by observing four facts that can be proven from the
definitions above.

1. %(∅)= 0.
2. %(�∪ �)=%(�) +%(�) −%(�∩ �).
3. If � ⊂ �, then %(�)< %(�). In fact, %(� \ �)=%(�) −%(�).
4. %(�1 ∪�2 ∪ · · ·) ≤ %(�1) +%(�2) + · · · .

3.3 Independence and Conditional Probability LINK
B1

Two events � and � are independent if and only if

%(�∩ �)=%(�)%(�).
If an experimenter must make a judgment without data about the independence of
events, they base it on their knowledge of the events, as discussed in the following
example.

Example 3.2

Answer the following questions and imperatives.

1. Consider a single fair die rolled twice. What is the probability that both
rolls are 6?

2. What changes if the die is biased by a weight such that %({6})= 1/7?
3. What changes if the die is biased by a magnet, rolled on a magnetic dice-

rolling tray such that %({6})= 1/7?
4. What changes if there are two dice, biased by weights such that for each
%({6})= 1/7, rolled once, both resulting in 6?

5. What changes if there are two dice, biased by magnets, rolled together?

https://math.ricopic.one/b1
https://math.ricopic.one/b1

24 Chapter 3

1. Let event �= {6}. Assuming a fair die, %(�)= 1/6. Having no reason to
judge otherwise, we assume the results are independent events. Therefore,

%(�∩�)=%(�)%(�)= 1
6
· 1

6
=

1
36
.

2. Bias is not dependence. So

%(�∩�)=%(�)%(�)= 1
7
· 1

7
=

1
49
.

3. Again, just bias, still independent.
4. Still independent.
5. The magnet dice can influence each other! This means they are not inde-

pendent! If one wanted to estimate the probability, either a theoretical
prediction based on the interaction would need to be developed or several
trials could be conducted to obtain an estimation.

3.3.1 Conditional Probability

If events � and � are somehow dependent, we need a way to compute the proba-
bility of � occurring given that � occurs. This is called the conditional probability
of � given �, and is denoted %(� | �). For %(�)> 0, it is defined as

%(� | �)= %(�∩ �)
%(�) .

We can interpret this as a restriction of the sample spaceΩ to �; i.e. the new sample
space Ω′=� ⊆Ω. Note that if � and � are independent, we obtain the obvious
result:

%(� | �)= %(�)%(�)
%(�)

=%(�).

Example 3.3

Consider two unbiased dice rolled once. Let events �= {sum of faces= 8} and
�= {faces are equal}. What is the probability the faces are equal given that their
sum is 8?

Probability 25

Directly applying section 3.3.1,

%(� | �)= %(�∩ �)
%(�)

=
%({(4, 4)})

%({(4, 4)}) +%({(2, 6)}) +%({(6, 2)}) +%({(3, 5)}) +%({(5, 3)})

=

1
6 · 1

6

5 · 1
6 · 1

6

=
1
5
.

We don’t count the event {(4, 4)} twice, but we do count both {(3, 5)} and {(5, 3)},
since they are distinct events. We say “order matters” for these types of events.

3.4 Bayes’ Theorem LINK
T9

Given two events � and �, Bayes’ theorem (aka Bayes’ rule) states
that

%(� | �)=%(� | �)%(�)
%(�) .

Sometimes this is written

%(� | �)= %(� | �)%(�)
%(� | �)%(�) +%(� | ¬�)%(¬�) (3.1)

=
1

1+ %(� | ¬�)
%(� | �) ·

%(¬�)
%(�)

. (3.2)

This is a useful theorem for determining a test’s effectiveness. If a test is performed
to determine whether an event has occurred, we might as questions like “if the
test indicates that the event has occurred, what is the probability it has actually
occurred?” Bayes’ theorem can help compute an answer.

3.4.1 Testing Outcomes

The test can be either positive or negative, meaning it can either indicate or not
indicate that � has occurred. Furthermore, this result can be either true☺ or false
☹.
There are four options, then. Consider an event � and an event that is a test

result � indicating that event � has occurred. table 3.1 shows these four possible
test outcomes. The event � occurring can lead to a true positive or a false negative,
whereas ¬� can lead to a true negative or a false positive.

https://math.ricopic.one/t9
https://math.ricopic.one/t9

26 Chapter 3

Table 3.1: Test outcome � for event �.

� ¬�

positive (�) true ☺ false ☹

negative (¬�) false ☹ true ☺

Terminology is important, here.

• %({true positive})=%(� | �), aka sensitivity or detection rate,
• %({true negative})=%(¬� | ¬�), aka specificity,
• %({false positive})=%(� | ¬�),
• %({false negative})=%(¬� | �).
Clearly, the desirable result for any test is that it is true. However, no test is true

100 percent of the time. So sometimes it is desirable to err on the side of the false
positive, as in the case of a medical diagnostic. Other times, it is more desirable to err
on the side of a false negative, as in the case of testing for defects in manufactured
balloons (when a false negative isn’t a big deal).

3.4.2 Posterior Probabilities

Returning to Bayes’ theorem, we can evaluate the posterior probability %(� | �) of
the event � having occurred given that the test � is positive, given information that
includes the prior probability %(�) of �. The form in equation (3.1) or equation (3.2)
is typically useful because it uses commonly known test probabilities: of the true
positive %(� | �) and of the false positive %(� | ¬�). We calculate %(� | �) when we
want to interpret test results.
Some interesting results can be found from this. For instance, if we let %(� | �)=

%(¬� | ¬�) (sensitivity equal specificity) and realize that %(� | ¬�) +%(¬� | ¬�)= 1
(when ¬�, either � or ¬�), we can derive the expression

%(� | ¬�)= 1−%(� | �).
Using this and %(¬�)= 1−%(�) in equation (3.2) gives (recall we’ve assumed
sensitivity equals specificity!)

%(� | �)= 1

1+ 1−%(� | �)
%(� | �) ·

1−%(�)
%(�)

=
1

1+
(

1
%(� | �) − 1

) (
1

%(�) − 1
)

Probability 27

This expression is plotted in figure 3.1. See that a positive result for a rare event
(small %(�)) is hard to trust unless the sensitivity %(� | �) and specificity %(¬� | ¬�)
are very high, indeed!

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

·10−2%(�) →

%
(�
|�
)
→

%(�|�)= 0.9000
%(�|�)= 0.9900
%(�|�)= 0.9990
%(�|�)= 0.9999

Figure 3.1. For different high-sensitivities, the probability that an event � occurred
given that a test for it � is positive versus the probability that the event � occurs, under
the assumption the specificity equals the sensitivity.

Example 3.4

Suppose 0.1 percent of springs manufactured at a given plant are defective.
Suppose you need to design a test that, when it indicates a deffective part, the
part is actually defective 99 percent of the time. What sensitivity should your
test have assuming it can be made equal to its specificity?

We proceed in Python.

from sympy import * # for symbolics
import numpy as np # for numerics
import matplotlib.pyplot as plt # for plots

Define symbolic variables.

var('p_A,p_nA,p_B,p_nB,p_B_A,p_B_nA,p_A_B',real=True)

(p_A, p_nA, p_B, p_nB, p_B_A, p_B_nA, p_A_B)

28 Chapter 3

Beginning with Bayes’ theorem and assuming the sensitivity and specificity
are equal by section 3.4.2, we can derive the following expression for the posterior
probability %(� | �).
p_A_B_e1 = Eq(p_A_B,p_B_A*p_A/p_B).subs(
{

p_B: p_B_A*p_A+p_B_nA*p_nA, # conditional prob
p_B_nA: 1-p_B_A, # Eq (3.5)
p_nA: 1-p_A

}
)
print(p_A_B_e1)

?�� =
?�?��

?�?�� + (1− ?�) (1− ?��)
Solve this for %(� | �), the quantity we seek.

p_B_A_sol = solve(p_A_B_e1,p_B_A,dict=True)
p_B_A_eq1 = Eq(p_B_A,p_B_A_sol[0][p_B_A])
print(p_B_A_eq1)

?�� =
?�� (1− ?�)

−2?�?�� + ?� + ?��
Now let’s substitute the given probabilities.

p_B_A_spec = p_B_A_eq1.subs(
{

p_A: 0.001,
p_A_B: 0.99,

}
)
print(p_B_A_spec)

?�� = 0.999989888981011
That’s a tall order!

Probability 29

3.5 Random Variables LINK
13

Probabilities are useful evenwhen they do not deal strictlywith events.
It often occurs that we measure something that has randomness
associated with it. We use random variables to represent these measurements.
A random variable - :Ω→R is a function that maps an outcome $ from the

sample space Ω to a real number G ∈R, as shown in figure 3.2. A random variable
will be denoted with a capital letter (e.g. - and) and a specific value that it maps
to (the value) will be denoted with a lowercase letter (e.g. G and :).
A discrete random variable is one that takes on discrete values. A continuous

random variable - is one that takes on continuous values.

random
variable

R

Ω

outcome $

G

-

Figure 3.2. A random variable - maps an outcome $ ∈Ω to an G ∈R.

Example 3.5

Roll two unbiased dice. Let be a random variable representing the sum of the
two. Let %(:) be the probability of the result : ∈ . Plot and interpret %(:).

Figure 3.3 shows the probability of each sum occurring.

2 3 4 5 6 7 8 9 10 11 12

1/36
2/36
3/36
4/36
5/36
6/36

Sum of two dice rolls :

P
ro
b
ab
il
it
y
%
(:
)

Figure 3.3. PMF for the summ of two dice rolled.

https://math.ricopic.one/13
https://math.ricopic.one/13

30 Chapter 3

We call this a probability mass function. It tells us the probability with wich
each outcome will occur.

Example 3.6

A resistor at nonzero temperature without any applied voltage exhibits an
interesting phenomenon: its voltage randomly fluctuates. This is called Johnson-

Nyquist noise and is a result of thermal excitation of charge carriers (electrons,
typically). For a given resistor and measurement system, let the probability density
function 5+ of the voltage + across an unrealistically hot resistor be

5+ (+)=
1√
�
4−+

2
.

Plot and interpret the meaning of this function.

The PDF is shown in figure 3.4.

−3 −2 −1 0 1 2 3
voltage +

Figure 3.4. The probability density function.

A probability density function must be integrated to find probability. The
probability a randomly measured voltage will be between two voltages is the
integral of 5+ across that voltage interval. Note that a resistor would need to be
extremely hot to have such a large thermal noise. In the next lecture, we consider
more probability density functions.

Probability 31

3.6 Probability Density and Mass Functions LINK
9Z

Consider an experiment that measures a random variable.We can plot
the relative frequency of the measurand landing in different “bins”
(ranges of values). This is called a frequency distribution or a probability mass

function (PMF).

Figure 3.5. Plot of a probability mass function.

Consider, for instance, a probability mass function as plotted in figure 3.5, where
a frequency 08 can be interpreted as an estimate of the probability of the measurand
being in the 8th interval. The sum of the frequencies must be unity:

:∑
8=1

08 = 1

with : being the number of bins.
The frequency density distribution is similar to the frequency distribution, but

with 08 ↦→ 08/ΔG, where ΔG is the bin width.
If we let the bin width approach zero, we derive the probability density function

(PDF)

5 (G)= lim
:→∞
ΔG→0

:∑
9=1

0 9/ΔG.

We typically think of a probability density function 5 , like the one in figure 3.6 as a
function that can be integrated over to find the probability of the random variable
(measurand) being in an interval [0, 1]:

%(G ∈ [0, 1])=
ˆ 1

0

5 (")3".

https://math.ricopic.one/9z
https://math.ricopic.one/9z

32 Chapter 3

Of course,

%(G ∈ (−∞,∞))=
ˆ ∞
−∞

5 (")3"

= 1.

Figure 3.6. Plot of a probability density function.

We now consider a common PMF and a common PDF.

3.6.1 Binomial PMF

Consider a random binary sequence of length = such that each element is a random
0 or 1, generated independently, like

(1, 0, 1, 1, 0, · · · , 1, 1).
Let events {1} and {0} be mutually exclusive and exhaustive and %({1})= ?. The
probability of the sequence above occurring is

%((1, 0, 1, 1, 0, · · · , 1, 1))= ?(1− ?)??(1− ?) · · · ??.
There are = choose :, (

=

:

)
=

=!
:!(= − :)! ,

possible combinations of : ones for = bits. Therefore, the probability of any
combination of : ones in a series is

5 (:)=
(
=

:

)
?:(1− ?)=−: .

We call section 3.6.1 the binomial distribution PDF.

Example 3.7

Consider a field sensor that fails for a given measurement with probability ?.
Given = measurements, plot the binomial PMF as a function of : failed measure-
ments for a few different probabilities of failure ? ∈ [0.04, 0.25, 0.5, 0.75, 0.96].

Probability 33

listing 3.1 shows Python code for constructing the PDFs plotted in figure 3.7.
Note that the symmetry is due to the fact that events {1} and {0} are mutually
exclusive and exhaustive.

0 20 40 60 80 100
Number of ones in sequence k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

p = 0.04
p = 0.25
p = 0.5
p = 0.75
p = 0.96

Figure 3.7. Binomial PDF for = = 100measurements and different values of %({1})= ?,
the probability of a measurement error. The plot is generated by the Python code of
??.

34 Chapter 3

Listing 3.1 Python code that generates the binomial PDF

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import comb

Parameters
n = 100
k_a = np.arange(1, n + 1)
p_a = np.array([0.04, 0.25, 0.5, 0.75, 0.96])

Binomial function
def binomial(n, k, p):

return comb(n, k) * (p ** k) * ((1 - p) ** (n - k))

Constructing the array
f_a = np.zeros((len(k_a), len(p_a)))
for i in range(len(k_a)):

for j in range(len(p_a)):
f_a[i, j] = binomial(n, k_a[i], p_a[j])

Plot
plt.figure()
colors = plt.cm.jet(np.linspace(0, 1, len(p_a)))
for j in range(len(p_a)):

plt.bar(k_a, f_a[:, j], color=colors[j], alpha=0.5, label=f'$p =
{p_a[j]}$')↩→

plt.legend(loc='best', frameon=False, fontsize='medium')
plt.xlabel('Number of ones in sequence k')
plt.ylabel('Probability')
plt.xlim([0, 100])
plt.show()

Save the plot to pdf
plt.savefig('binomial-pdf.pdf', bbox_inches='tight')

3.6.2 Gaussian PDF

The Gaussian or normal random variable G has PDF

5 (G)= 1

�
√

2�
exp
−(G −�)2

2�2
.

Although we’re not quite ready to understand these quantities in detail, it can be
shown that the parameters � and � have the following meanings:

• � is themean of G,
• � is the standard deviation of G, and
• �2 is the variance of G.

Probability 35

−3 −2 −1 0 1 2 3
random variable G

Figure 3.8. PDF for Gaussian random variable G, mean �= 0, and standard deviation
�= 1/

√
2.

Consider the “bell-shaped” Gaussian PDF in figure 3.8. It is always symmetric.
The mean � is its central value and the standard deviation � is directly related to
its width. We will continue to explore the Gaussian distribution in the following
lectures, especially in section 4.3.

3.7 Expectation LINK
JH

Recall that a random variable is a function - :Ω→R that maps from
the sample space to the reals. Random variables are the arguments of
probability mass functions (PMFs) and probability density functions (PDFs).
The expected value (or expectation) of a random variable is akin to its “average

value” and depends on its PMF or PDF. The expected value of a random variable
- is denoted 〈-〉 or E [-]. There are two definitions of the expectation, one for a
discrete random variable, the other for a continuous random variable. Before we
define, them, however, it is useful to predefine the most fundamental property of a
random variable, itsmean.

Definition 3.1

The mean of a random variable - is defined as

<- =E [-] .

Let’s begin with a discrete random variable.

https://math.ricopic.one/jh
https://math.ricopic.one/jh

36 Chapter 3

Definition 3.2

Let be a discrete random variable and 5 its PMF. The expected value of is
defined as

E []=
∑
∀:

: 5 (:).

Example 3.8

Given a discrete random variable with PMF shown below, what is its mean
< ?

1 2 3

1/6

1/3

1/2

Random variable

Figure 3.9. PMF of discrete random variable .

Compute from the definitions:

� =E []

=

3∑
8=1

:8 5 (:8)

= 1 · 1
6
+ 2 · 3

6
+ 3 · 2

6

=
13
6
.

Let us now turn to the expectation of a continuous random variable.

Definition 3.3

Let - be a continuous random variable and 5 its PDF. The expected value of - is
defined as

E [-]=
ˆ ∞
−∞

G 5 (G)3G.

Probability 37

Example 3.9

Given a continuous random variable - with Gaussian PDF 5 , what is the
expected value of -?

Random variable G

Figure 3.10. Gaussian PDF for random variable -.

Compute from the definition:

E [-]=
ˆ ∞
−∞

G 5 (G)3G

=

ˆ ∞
−∞

G
1

�
√

2�
exp
−(G −�)2

2�2
3G.

Substitute I = G −�:

E [-]=
ˆ ∞
−∞
(I +�) 1

�
√

2�
exp
−I2

2�2
3I

=�

ˆ ∞
−∞

1

�
√

2�
exp
−I2

2�2
3I + 1

�
√

2�

ˆ ∞
−∞

I exp
−I2

2�2
3I.

The first integrand is a Gaussian PDF with its �= 0, so, by definition, the first
integral is 1. The second integrand is an odd function, so its improper integral
over all I is 0. This leaves

E [-]=�.

Due to its sum or integral form, the expected value E [·] has some familiar
properties for random variables - and . and reals 0 and 1.

E [0]= 0 (3.3)

E [- + 0]=E [-] + 0 (3.4)

E [0-]= 0 E [-] (3.5)

E [E [-]]=E [-] (3.6)

E [0- + 1.]= 0 E [-] + 1 E [.] . (3.7)

38 Chapter 3

3.8 Central Moments LINK
F2

Given a probability mass function (PMF) or probability density func-
tion (PDF) of a random variable, several useful parameters of the
random variable can be computed. These are called central moments, which
quantify parameters relative to its mean.

Definition 3.4

The =th central moment of random variable -, with PDF 5 , is defined as

E [(- −�-)=]=
ˆ ∞
−∞
(G −�-)= 5 (G)3G.

For discrete random variable with PMF 5 ,

E [(−�)=]=
∞∑
∀:
(: −�)= 5 (:).

Example 3.10

Prove that the first moment of continuous random variable - is zero.

From the definition of the first moment:

E
[
(- −�-)1

]
=

ˆ ∞
−∞
(G −�-)1 5 (G)3G (3.8)

=

ˆ ∞
−∞

G 5 (G)3G −�-
ˆ ∞
−∞

5 (G)3G (split)

=�- −�- · 1 (defs. of �- and PDF)

= 0. (3.9)

The second central moment of random variable - is called the variance and is
denoted

�2
- or Var [-] or E

[
(- −�-)2

]
.

The variance is a measure of the width or spread of the PMF or PDF. We usually
compute the variance with the formula

Var [-]=E
[
-2] −�2

- .

https://math.ricopic.one/f2
https://math.ricopic.one/f2

Probability 39

Other properties of variance include, for real constant 2,

Var [2]= 0

Var [- + 2]=Var [-]

Var [2-]= 22 Var [-] .
The standard deviation is defined as

�- =

√
�2
-
.

Although the variance is mathematically more convenient, the standard deviation
has the same physical units as -, so it is often the more physically meaningful
quantity. Due to its meaning as the width or spread of the probability distribution,
and its sharing of physical units, it is a convenient choice for error bars on plots of
a random variable.
The skewness Skew [-] is a normalized third central moment:

Skew [-]=
E
[
(- −�-)3

]
�3
-

.

Skewness is a measure of asymmetry of a random variable’s PDF or PMF. For a
symmetric PMF or PDF, such as the Gaussian PDF, Skew [-]= 0.
The kurtosis Kurt [-] is a normalized fourth central moment:

Kurt [-]=
E
[
(- −�-)4

]
�4
-

.

Kurtosis is ameasure of the tailedness of a randomvariable’s PDF or PMF. “Heavier”
tails yield higher kurtosis.
A Gaussian random variable has PDF with kurtosis 3. Given that for Gaussians

both skewness and kurtosis have nice values (0 and 3), we can think of skewness
and and kurtosis as measures of similarity to the Gaussian PDF.

3.9 Transforming Random Variables LINK
SR

TODO: describe the theory and formulae
For random variables - and . with PDFs 5- and 5. , and with

invertible transformation . = 6(-), we have the linear approximation

5.(H)=
1

|3H/3G | 5-(G)
����
G ↦→6−1(H)

. (3.10)

https://math.ricopic.one/sr
https://math.ricopic.one/sr

40 Chapter 3

Example 3.11

Suppose we are to probabilistically quantify a parachutist’s chances of landing
within a certain horizontal distance of a landing target, accounting for random
wind displacements. Develop a PDF for the random variable ', the landing
distance from the target.

Without much intuition, no data, or a very good physical model of the situation,
we are left to bootstrap a solution. A toehold can perhaps be found by narrowing
the problem to a drop of a fixed, relatively short distance, such as that shown in
figure 3.11.

Figure 3.11. A parachutist falling 10 m and being displaced by wind an amount
modeled by random variable -.

For each vertical drop of 10 m, we might expect a horizontal displacement of a
fewmeters. Without any information about average prevailing winds, we cannot
expect any particular direction to be most likely. It seems more likely that wind
gusts would displace the parachutist a small amount than a large amount, and
even less likely to displace a very large amount. These facts suggest a reasonable
model to start with is a Gaussian distribution with PDF

5-(G)=
1√

2��
exp
−(G −�)2

2�2
,

Probability 41

where �= 0mand �= 5m. This model could clearly be improvedwith some data
or a detailed analysis of the physics involved, but this seems to be a reasonable
place to begin.
From here, we can extrapolate. For one 10-m drop, the displacement random

variable is -. For two 10-m drops, the displacement random variable is 2-, and
so on. We conclude that for # drops of 10 m, the landing displacement random
variable ' is

'=#-.

Here we have assumed the parachutist lands after # drops of 10 m. Another
way of writing this is

'= ℎ(-)=#-.
The function ℎ transforms random variable - (with value G) to random variable
' with value (A).
We can apply equation (3.10) directly to find the PDF of ' as follows:

5.(H)=
1

|3A/3G | 5-(G)
����
G ↦→ℎ−1(A)

(3.11)

=
1
#
· 1√

2��
exp
−(A/# −�)2

2�2
. (3.12)

Letting �′=#� and �′=#�, we obtain

5'(A)=
1

√
2��′

exp
−(G −�′)2

2�′2
.

That is, ' also has a Gaussian PDF. We see that the linear transformation has
simply transformed the mean � and standard deviation � accordingly.
We observe that for greater # (higher jumps), the standard deviation is also

greater. This is an intuitive result. We now turn to Python for graphical and
simulation purposes.
Load the necessary packages:

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Define fixed parameters:

mu = 0.0 # Mean of the Gaussian distribution for the 10 m drop
sigma = 5.0 # Standard deviation of the Gaussian distribution for the 10 m drop

Define the 10 m drop Gaussian distribution 5-(G) symbolically

42 Chapter 3

x, r, N = sp.symbols('x, r, N', real=True)
f_X = 1/(sigma * sp.sqrt(2 * sp.pi)) * sp.exp(-(x - mu)**2 / (2 * sigma**2))
print(f_X)

0.1*sqrt(2)*exp(-0.02*x**2)/sqrt(pi)

Define the functional relationship between - and ', the horizontal distance
from the initial drop point

h_eq = sp.Eq(r, N * x)
h_sol = sp.solve(h_eq, r, dict=True)[0]
h_inv = sp.solve(h_eq, x, dict=True)[0]
dr_dx = sp.diff(h_sol[r], x)
print(dr_dx)

N

Define symbolically 5'(A), the probability density function for the horizontal
distance from the initial drop point:

f_R = 1/sp.Abs(dr_dx) * f_X.subs(h_inv)
print(f_R)

0.1*sqrt(2)*exp(-0.02*r**2/N**2)/(sqrt(pi)*Abs(N))

Lambdify the PDF for numerical evaluation

f_R_fun = sp.lambdify((r, N), f_R, 'numpy')

Plot the PDF 5'(A) for several values of # :
N_vals = np.array([600, 800, 1000])/10 # Drop steps of 10 m
r_vals = np.linspace(-1000, 1000, 1001)
fig, ax = plt.subplots()
for N_val in N_vals:

p_vals = f_R_fun(r_vals, N_val)
ax.plot(r_vals, p_vals, label=f'N = {N_val}')

ax.set_xlabel('r_f (m)')
ax.set_ylabel('$p(r_f)$')
ax.legend()
plt.draw()

Probability 43

−1000 −750 −500 −250 0 250 500 750 1000

A 5 (m)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

?
(A
5
)

N = 60.0

N = 80.0

N = 100.0

Figure 3.12. Probability density function 5'(A) for several values of #

Compute the probability of landing within ±500 m of the initial drop point:

r_min, r_max = -500, 500
p_landing = sp.integrate(f_R, (r, r_min, r_max))
print(p_landing)

Piecewise((0.707106781186548*sqrt(2)*Abs(N)*erf(70.7106781186548/Abs(N))/N,
N >= 0), (-
0.707106781186548*sqrt(2)*Abs(N)*erf(70.7106781186548/Abs(N))/N,
True))

↩→

↩→

↩→

Plot the probability of landing within ±500 m of the initial drop point as a
function of # :

N_vals = np.linspace(1, 1200, 1001)
p_landing_fun = sp.lambdify(N, p_landing, 'numpy')
p_landing_vals = np.zeros(N_vals.shape[0]) # Preallocate
for i, N_val in enumerate(N_vals):

p_landing_vals[i] = p_landing_fun(N_val) # Evaluate
fig, ax = plt.subplots()
ax.plot(N_vals * 10, p_landing_vals)
ax.set_xlabel('Drop height (m)')
ax.set_ylabel('$p(\pm 500 m)$')
plt.draw()

44 Chapter 3

0 2000 4000 6000 8000 10000 12000

Drop height (m)

0.2

0.4

0.6

0.8

1.0

?
(±

50
0<
)

Figure 3.13. Probability of landing within ±500 m of the initial drop point as a
function of #

Define a function to take one 10 m drop:

def take_drop(x_previous):
x_new = x_previous + np.random.normal(mu, sigma)
return x_new

Define a function to simulate a random walk:

def simulate_random_walk(N_sim):
y_sim = np.flip(np.arange(0, N_sim + 1)) * 10 # Heights
x_sim = np.zeros(N_sim + 1) # Preallocate
x_sim[0] = 0 # Initial drop point
for i in range(1, N_sim + 1):

x_sim[i] = take_drop(x_sim[i - 1])
return x_sim, y_sim

Simulate several random walks (drops) for various values of # :

N_vals = [60, 80, 100]
n_sim = 50 # Number of simulations
x_sims = [np.zeros((n_sim, N_val+1)) for N_val in N_vals] # Preallocate
y_sims = [np.zeros((n_sim, N_val+1)) for N_val in N_vals] # Preallocate
for i, N_val in enumerate(N_vals):

for j in range(n_sim):
x_sim, y_sim = simulate_random_walk(N_val)
x_sims[i][j] = x_sim
y_sims[i][j] = y_sim

Probability 45

Plot the random walks (drops) for several values of # :

fig, ax = plt.subplots()
for i, N_val in enumerate(N_vals):

for j in range(n_sim):
ax.plot(

x_sims[i][j], y_sims[i][j],
color=f'C{i}', alpha=[0.7, 0.5, 0.3][i]

)
ax.set_xlabel('Horizontal distance (m)')
ax.set_ylabel('Height (m)')
plt.show()

−100 −50 0 50 100

Horizontal distance (m)

0

200

400

600

800

1000

H
ei
g
h
t
(m

)

Figure 3.14. Random walks (drops) for several values of #

46 Chapter 3

3.10 Multivariate Probability and Correlation LINK
WQ

Thus far, we have considered probability density and mass functions
(PDFs and PMFs) of only one randomvariable. But, of course, oftenwe
measure multiple random variables -1 , -2 ,…, -= during a single event, meaning a
measurement consists of determining values G1 , G2 ,…, G= of these random variables.
We can consider an =-tuple of continuous random variables to form a sample

space Ω=R= on which a multivariate function 5 :R=→R, called the joint PDF
assigns a probability density to each outcome x ∈R= . The joint PDF must be greater
than or equal to zero for all x ∈R= , the multiple integral over Ωmust be unity, and
the multiple integral over a subset of the sample space � ⊂Ω is the probability of
the event �.
We can consider an =-tuple of discrete random variables to form a sample space
N=0 on which a multivariate function 5 :N=0→R, called the joint PMF assigns a
probability to each outcome x ∈N=0 . The joint PMF must be greater than or equal to
zero for all x ∈N=0 , the multiple sum over Ωmust be unity, and the multiple sum
over a subset of the sample space � ⊂Ω is the probability of the event �.

Example 3.12

Let’s visualize multivariate PDFs by plotting a bivariate gaussian using the
scipy.stats function multivariate_normal

We proceed in Python. First, load packages:

import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Define the mean and covariance matrix for a bivariate Gaussian distribution.

mu = [10, 20] # Mean
Sigma = [[1, 0], [0, 0.2]] # Covariance matrix

Generate grid points as input for the PDF.

x1_a = np.linspace(mu[0] - 5 * np.sqrt(Sigma[0][0]), mu[0] + 5 * np.sqrt(Sigma[0][0]), 30)
x2_a = np.linspace(mu[1] - 5 * np.sqrt(Sigma[1][1]), mu[1] + 5 * np.sqrt(Sigma[1][1]), 30)

Create a meshgrid.

X1, X2 = np.meshgrid(x1_a, x2_a)

Calculate the PDF.

pos = np.dstack((X1, X2))
rv = multivariate_normal(mu, Sigma)
f = rv.pdf(pos)

https://math.ricopic.one/wq
https://math.ricopic.one/wq

Probability 47

Plot the PDF.

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
p = ax.plot_surface(X1, X2, f, cmap='copper')
ax.set_xlabel(r'x_1', fontsize=12)
ax.set_ylabel(r'x_2', fontsize=12)
ax.set_zlabel(r'$f(x_1,x_2)$', fontsize=12)
plt.show()

5.0
7.5

10.0
12.5

15.0G1
18

19
20

21
22

G 2

0.0

0.1

0.2

0.3

5 (
G

1
, G

2)
Figure 3.15. Bivariate Gaussian PDF.

The plot shows the PDF of a bivariate Gaussian distribution. Pretty neat, right?

3.10.1 Marginal Probability

Themarginal PDF of a multivariate PDF is the PDF of some subspace ofΩ after one
or more variables have been “integrated out,” such that a fewer number of random
variables remain. Of course, these marginal PDFs must have the same properties of
any PDF, such as integrating to unity.

Example 3.13

Let’s demonstrate this by numerically integrating over G2 in the bivariate
Gaussian, above.

Continuing from where we left off, let’s integrate.

f1 = np.trapz(f.T, x2_a, axis=1) # Trapezoidal integration

Let’s plot the marginal PDF.

48 Chapter 3

fig, ax = plt.subplots()
ax.plot(x1_a, f1, linewidth=2)
ax.set_xlabel(r'x_1')
ax.set_ylabel(r'$g(x_1)=\int_{-\infty}^\infty f(x_1,x_2) d x_2$')
plt.show()

[<matplotlib.lines.Line2D at 0x1680f0bd0>]

Text(1, 0, 'x_1')

Text(0, 0.5, '$g(x_1)=\\int_{-\\infty}^\\infty f(x_1,x_2) d x_2$')

6 8 10 12 14
G1

0.0

0.1

0.2

0.3

0.4

6
(G

1)
=
´ ∞ −∞

5(
G

1
,G

2)
3
G

2

Figure 3.16. Marginal PDF of a bivariate Gaussian distribution.

We should probably verify that this integrates to one.

integral_value = np.trapz(f1, x1_a)
print(f'integral over x_1 = {integral_value:.7f}')

integral over x_1 = 0.9999986

Not bad.

Probability 49

3.10.2 Covariance

Very often, especially in machine learning applications, the question about two
random variables - and . is: how do they co-vary? That is what is their covariance,
defined as

Cov [-,.] ≡� ((- −�-)(. −�.))
=�(-.) −�-�. .

Note that when - =., the covariance is just the variance. When a covariance is
large and positive, it is an indication that the random variables are strongly correlated.
When it is large and negative, they are strongly anti-correlated. Zero covariancemeans
the variables are uncorrelated. In fact, correlation is defined as

Cor [-,.]= Cov [-,.]√
Var [-]Var [.]

.

This is essentially the covariance “normalized” to the interval [−1, 1].

3.10.2.1 Sample Covariance As with the other statistics we’ve considered,
covariance can be estimated from measurement. The estimate, called the sample

covariance @-. , of random variables - and . with sample size # is given by

@-. =
1

− 1

#∑
8=1

(G8 −-)(H8 −.).

3.10.2.2 Multivariate Covariance With = random variables -8 , one can compute
the covariance of each pair. It is common practice to define an = × = matrix of
covariances called the covariance matrix Σ such that each pair’s covariance

Cov
[
-8 , -9

]
appears in its row-column combination (making it symmetric), as shown below.

Σ=


Cov [-1 , -1] Cov [-1 , -2] · · · Cov [-1 , -=]
Cov [-2 , -1] Cov [-2 , -2] Cov [-2 , -=]

...
. . .

...

Cov [-= , -1] Cov [-= , -2] · · · Cov [-= , -=]


The multivariate sample covariance matrix & is the same as above, but with

sample covariances @-8-9 .
Both covariance matrices have correlation analogs.

50 Chapter 3

Example 3.14

Let’s use a dataset from the Scikit-Learn package with multivariate data on the
attributes of wine. Compute the sample covariance and correlation matrices. Plot
variables pairwise and color them with the corresponding correlation.

Load the necessary libraries.

import numpy as np
from sklearn.datasets import load_wine
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
import matplotlib.cm as cm

Load the dataset and print the feature names.

data = load_wine()
print(f"Features: {data.feature_names}")

Features: ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash',
'magnesium', 'total_phenols', 'flavanoids',
'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity',
'hue', 'od280/od315_of_diluted_wines', 'proline']

↩→

↩→

↩→

Select a list of features to analyze and select the corresponding data.

features = [
'alcohol', 'malic_acid', 'ash', 'magnesium',
'total_phenols', 'flavanoids'

]
X = data.data[

:, [data.feature_names.index(f) for f in features]
]

Compute the sample covariance and correlation matrices.

cov = np.cov(X.T) # Covariance matrix
cor = np.corrcoef(X.T) # Correlation matrix (normalized covariance)
print(f"Covariance matrix:\n{cov}")
print(f"Correlation matrix:\n{cor}")

Probability 51

Covariance matrix:
[[6.59062328e-01 8.56113090e-02 4.71151590e-02 3.13987812e+00

1.46887218e-01 1.92033222e-01]
[8.56113090e-02 1.24801540e+00 5.02770393e-02 -8.70779534e-01
-2.34337723e-01 -4.58630366e-01]

[4.71151590e-02 5.02770393e-02 7.52646353e-02 1.12293658e+00
2.21455913e-02 3.15347299e-02]

[3.13987812e+00 -8.70779534e-01 1.12293658e+00 2.03989335e+02
1.91646988e+00 2.79308703e+00]

[1.46887218e-01 -2.34337723e-01 2.21455913e-02 1.91646988e+00
3.91689535e-01 5.40470422e-01]

[1.92033222e-01 -4.58630366e-01 3.15347299e-02 2.79308703e+00
5.40470422e-01 9.97718673e-01]]

Correlation matrix:
[[1. 0.09439694 0.2115446 0.27079823 0.28910112

0.23681493]↩→

[0.09439694 1. 0.16404547 -0.0545751 -0.335167
-0.41100659]↩→

[0.2115446 0.16404547 1. 0.28658669 0.12897954
0.11507728]↩→

[0.27079823 -0.0545751 0.28658669 1. 0.21440123
0.19578377]↩→

[0.28910112 -0.335167 0.12897954 0.21440123 1.
0.8645635]↩→

[0.23681493 -0.41100659 0.11507728 0.19578377 0.8645635 1.
]]↩→

Plot the data pairings with color corresponding to the correlation matrix.

52 Chapter 3

fig, ax = plt.subplots(cor.shape[0], cor.shape[1], figsize=(10, 10))
norm = Normalize(vmin=-1, vmax=1)
cmap = cm.coolwarm
scatter = np.empty(cor.shape, dtype=object)
for i in range(cor.shape[0]):

for j in range(cor.shape[1]):
scatter[i, j] = ax[i, j].scatter(

X[:, i], X[:, j],
c=cor[i, j] * np.ones(X.shape[0]), cmap=cmap, norm=norm,
s=0.5 # Point size

)
if i == cor.shape[0] - 1:

ax[i, j].set_xlabel(
features[j].replace("_", " "), rotation=45, ha='right')

if j == 0:
ax[i, j].set_ylabel(

features[i].replace("_", " "), rotation=0, ha='right')
ax[i, j].set_xticks([])
ax[i, j].set_yticks([])

plt.tight_layout()
cbar = fig.colorbar(scatter[0, 0], ax=ax, orientation='horizontal')
plt.show()

Probability 53

alcohol

malic acid

ash

magnesium

total phenols

alc
ohol

flavanoids

malic
 ac

id ash

magnesi
um

total
phenols

flav
anoids

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.17. Pairwise scatter plot of the features with color corresponding to
correlation.

3.10.3 Conditional Probability and Dependence

Independent variables are uncorrelated. However, uncorrelated variables may or may not
be independent. Therefore, we cannot use correlation alone as a test for independence.
For instance, for random variables - and ., where - has some even distribution
and . =-2, clearly the variables are dependent. However, the are also uncorrelated
(due to symmetry).

54 Chapter 3

Example 3.15

Using a uniform distribution*(−1, 1), show that - and . are uncorrelated (but
dependent) with . =-2 with some sampling. We compute the correlation for
different sample sizes.

Load the necessary libraries.

import numpy as np
import matplotlib.pyplot as plt

Generate the data for G and H.

N_a = np.round(np.linspace(10, 500, 100)).astype(int) # Sample sizes
qc_a = np.full(N_a.shape, np.nan) # Correlation initialization
np.random.seed(6) # Seed for reproducibility
x_a = -1 + 2 * np.random.rand(max(N_a)) # Uniform random numbers
y_a = x_a ** 2 # H = G2

Calculate the cross-correlation.

for i in range(len(N_a)):
q = np.cov(x_a[:N_a[i]], y_a[:N_a[i]])
qc = np.corrcoef(x_a[:N_a[i]], y_a[:N_a[i]])
qc_a[i] = qc[0, 1] # "cross" correlation

Plot the absolute cross correlation as a function of sample size.

fig, ax = plt.subplots()
p, = ax.plot(N_a, np.abs(qc_a), linewidth=2)
ax.set_xlabel(r'Sample size N')
ax.set_ylabel(r'Absolute sample correlation')
ax.set_ylim(bottom=0)
plt.show()

Probability 55

0 100 200 300 400 500

Sample size #

0.00

0.05

0.10

0.15

0.20

0.25

A
b
so
lu
te
sa
m
p
le
co
rr
el
at
io
n

Figure 3.18. Correlation between G and H as a function of sample size.

The absolute values of the correlations are shown in the figure. Note that we
should probably average several such curves to estimate how the correlation
would drop off with # , but the single curve describes our understanding that
the correlation, in fact, approaches zero in the large-sample limit.

56 Chapter 3

3.11 Problems LINK
TS

Problem 3.1 LINKGRAIN Several physical processes can be modeled with a random
walk: a process of interatively changing a quantity by some random amount.
Infinitely many variations are possible, but common factors of variation include
probability distribution, step size, dimensionality (e.g. one-dimensional, two-
dimensional, etc.), and coordinate system. Graphical representations of these walks
can be beautiful. Develop a computer program that generates random walks and
corresponding graphics. Do it well and call it art because it is.

Problem 3.2 LINKFREE Consider the defective spring problem from example 3.4. One
way to improve the probability of a true positive test (i.e., the sensitivity) is to
add a second test for which a positive event is called �. Again assuming that the
sensitivity and specificity are equal for tests � and �, and that the sensitivity of
test � is %(�|�)= 0.995 what is the required sensitivity for test �? Clearly state any
assumptions.

https://math.ricopic.one/ts
https://math.ricopic.one/ts
https://math.ricopic.one/grain
https://math.ricopic.one/free

4 Statistics LINK
1M

Whereas probability theory is primarily focused on the relations among mathemati-
cal objects, statistics is concerned with making sense of the outcomes of observation
(Skiena 2001). However, we frequently use statistical methods to estimate proba-
bilistic models. For instance, we will learn how to estimate the standard deviation
of a random process we have some reason to expect has a Gaussian probability
distribution.
Statistics has applications in nearly every applied science and engineering dis-

cipline. Any time measurements are made, statistical analysis is how one makes
sense of the results. For instance, determining a reasonable level of confidence in a
measured parameter requires statistics.
A particularly hot topic nowadays is machine learning, which seems to be a

field with applications that continue to expand. This field is fundamentally built on
statistics.
A good introduction to statistics appears at the end of (Ash 2008). Amore involved

introduction is given by (Jaynes et al. 2003). The treatment by (Kreyszig 2011) is
rather incomplete, as will be our own.

https://math.ricopic.one/1m
https://math.ricopic.one/1m

58 Chapter 4

4.1 Populations, Samples, and Machine Learning LINK
3E

An experiment’s population is a complete collection of objects that we
would like to study. These objects can be people, machines, processes,
or anything else we would like to understand experimentally.
Of course, we typically can’t measure all of the population. Instead, we take a

subset of the population—called a sample—and infer the characteristics of the
entire population from this sample.
However, this inference that the sample is somehow representative of the popu-

lation assumes the sample size is sufficiently large and that the sampling is random.
This means selection of the sample should be such that no one group within a
population are systematically over- or under-represented in the sample.
Machine learning is a field that makes extensive use of measurements and

statistical inference. In it, an algorithm is trained by exposure to sample data, which
is called a training set. The variables measured are called features. Typically, a
predictive model is developed that can be used to extrapolate from the data to a
new situation. The methods of statistical analysis we introduce in this chapter are
the foundation of most machine learning methods.

Example 4.1

Consider a robot, Pierre, with a particular gravitas and sense of style. He seeks
the nicest pair of combat boots for wearing in the autumn rains. Pierre is to
purchase the boots online via image recognition, and decides to gather data by
visiting a hipster hangout one evening to train his style. For a negative contrast,
he also watches footage of a white nationalist rally, focusing special attention on
the boots of wearers of khakis and polos. Comment on Pierre’s methods.

Pierre must identify features in the boots, such as color, heel-height, and stitching.
Choosing two places to sample certainly enhances the sample or training set.
Positive correlations can be soughtwith the first group in the sample and negative
with the second. The choosing of “desirable” and “undesirable” sample groups
is an example of supervised learning, which is to say the desirability of one group’s
boots and the undesirability of the other’s is assumed to be known.

https://math.ricopic.one/3e
https://math.ricopic.one/3e

Statistics 59

4.2 Estimation of Sample Mean and Variance

4.2.1 Estimation and Sample Statistics LINK
LU

The mean and variance definitions of section 3.7 and section 3.8 apply
only to a random variable for which we have a theoretical probability
distribution. Typically, it is not until after having performed many measurements
of a random variable that we can assign a good distribution model. Until then,
measurements can help us estimate aspects of the data. We usually start by esti-
mating basic parameters such as mean and variance before estimating a probability
distribution.
There are two key aspects to randomness in the measurement of a random

variable. First, of course, there is the underlying randomness with its probability
distribution, mean, standard deviation, etc., which we call the population statistics.
Second, there is the statistical variability that is due to the fact that we are estimating
the random variable’s statistics—called its sample statistics—from some sample.
Statistical variability is decreased with greater sample size and number of samples,
whereas the underlying randomness of the random variable does not decrease.
Instead, our estimates of its probability distribution and statistics improve.

4.2.2 Sample Mean, Variance, and Standard Deviation

The arithmetic mean or samplemean of ameasurandwith sample size# , represented
by random variable -, is defined as

G =
1
#

#∑
8=1

G8 .

If the sample size is large, G→<- (the sample mean approaches the mean). The
population mean is another name for the mean <- , which is equal to

<- = lim
#→∞

1
#

#∑
8=1

G8 .

Recall that the definition of the mean is <- =E [G].
The sample variance of ameasurand represented by randomvariable- is defined

as

(2
- =

1
− 1

#∑
8=1

(G8 − G)2.

If the sample size is large, (2
-
→ �2

-
(the sample variance approaches the variance).

The population variance is another term for the variance �2
-
, and can be expressed

https://math.ricopic.one/lu
https://math.ricopic.one/lu

60 Chapter 4

as

�2
- = lim

#→∞

1
− 1

#∑
8=1

(G8 − G)2.

Recall that the definition of the variance is �2
-
=E

[
(- −<-)2

]
.

The sample standard deviation of a measurand represented by random variable -
is defined as

(- =

√
(2
-
.

If the sample size is large, (-→ �- (the sample standard deviation approaches
the standard deviation). The population standard deviation is another term for the
standard deviation �- , and can be expressed as

�- = lim
#→∞

√
(2
-
.

Recall that the definition of the standard deviation is �- =

√
�2
-
.

4.2.3 Sample Statistics as Random Variables

There is an ambiguity in our usage of the term “sample.” It can mean just one mea-
surement or it can mean a collection of measurements gathered together. Hopefully,
it is clear from context.
In the latter sense, often we collect multiple samples, each of which has its own

sample mean - 8 and standard deviation (-8 . In this situation, - 8 and (-8 are them-
selves random variables (meta af, I know). This means they have their own sample

means - 8 and (-8 and standard deviations (- 8
and ((-8 .

The mean of means - 8 is equivalent to a mean with a larger sample size and
is therefore our best estimate of the mean of the underlying random process. The
mean of standard deviations (-8 is our best estimate of the standard deviation of
the underlying random process. The standard deviation of means (

- 8
is a measure

of the spread in our estimates of the mean. It is our best estimate of the standard
deviation of the statistical variation and should therefore tend to zero as sample size
and number of samples increases. The standard deviation of standard deviations

((-8 is a measure of the spread in our estimates of the standard deviation of the
underlying process. It should also tend to zero as sample size and number of samples
increases.
Let # be the size of each sample. It can be shown that the standard deviation of

the means (
- 8
can be estimated from a single sample standard deviation:

(
- 8
≈ (-8√

#
.

Statistics 61

This shows that as the sample size # increases, the statistical variability of the mean
decreases (and in the limit approaches zero).

4.2.4 Nonstationary Signal Statistics

The sample mean, variance, and standard deviation definitions, above, assume the
random process is stationary—that is, its population mean does not vary with time.
However, a great many measurement signals have populations that do vary with
time, i.e. they are nonstationary. Sometimes the nonstationarity arises from a “drift”
in the dc value of a signal or some other slowly changing variable. But dynamic
signals can also change in a recognizable and predictable manner, as when, say, the
temperature of a room changes when a window is opened or when a water level
changes with the tide.
Typically, we would like to minimize the effect of nonstationarity on the signal

statistics. In certain cases, such as drift, the variation is a nuissance only, but other
times it is the point of the measurement.
Two common techniques are used, depending on the overall type of nonstation-

arity. If it is periodic with some known or estimated period, the measurement data
series can be “folded” or “reshaped” such that the 8th measurement of each period
corresponds to the 8th measurement of all other periods. In this case, somewhat
counterintuitively, we can consider the 8th measurements to correspond to a sample
of size # , where # is the number of periods over which measurements are made.
When the signal is aperiodic, we often simply divide it into “small” (relative to

its overall trend) intervals over which statistics are computed, separately.
Note that in this discussion, we have assumed that the nonstationarity of the

signal is due to a variable that is deterministic (not random).

Example 4.2

Consider the measurement of the temperature inside a desktop computer chassis
via an inexpensive thermistor, a resistor that changes resistance with temperature.
The processor and power supply heat the chassis in a manner that depends on
processing demand. For the test protocol, the processors are cycled sinusoidally
through processing power levels at a frequency of 50 mHz for =) = 12 periods
and sampled at 1 Hz. Assume a temperature fluctuation between about 20 and
50 C and gaussian noise with standard deviation 4 C. Consider a sample to be the
multiple measurements of a certain instant in the period.

1. Generate and plot simulated temperature data as a time series and as
a histogram or frequency distribution. Comment on why the frequency
distribution sucks.

62 Chapter 4

2. Compute the sample mean and standard deviation for each sample in the

cycle.
3. Subtract the mean from each sample in the period such that each sample

distribution is centered at zero. Plot the composite frequency distribution
of all samples, together. This represents our best estimate of the frequency
distribution of the underlying process.

4. Plot a comparison of the theoretical mean, which is 35, and the sample
mean of means with an error bar. Vary the number of samples =) and
comment on its effect on the estimate.

5. Plot a comparison of the theoretical standard deviation and the sample
mean of sample standard deviations with an error bar. Vary the number of
samples =) and comment on its effect on the estimate.

6. Plot the sample means over a single period with error bars of ± one sam-
ple standard deviation of the means. This represents our best estimate of
the sinusoidal heating temperature. Vary the number of samples =) and
comment on the estimate.

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

Generate the Temperature Data The temperature data can be generated by
constructing an array that is passed to a sinusoid, then “randomized” by gaussian
random numbers.
Set a random seed for reproducible pseudorandom numbers.

np.random.seed(43)

Define constants with

f = 50e-3 # Hz
a = 15 # C
dc = 35 # C
fs = 1 # Hz
nT = 12 # number of sinusoid periods
s = 4 # C
np_ = int(fs / f + 1) # number of samples per period
n = nT * np_ + 1 # total number of samples

Generate the temperature data.

Statistics 63

t_a = np.linspace(0, nT / f, n)
sin_a = dc + a * np.sin(2 * np.pi * f * t_a)
noise_a = s * np.random.randn(n)
signal_a = sin_a + noise_a

Plot temperature over time

fig, ax = plt.subplots()
ax.plot(t_a, signal_a, 'o-', color='0.8', markerfacecolor='b', markersize=3)
plt.xlabel('time (s)')
plt.ylabel('temperature (C)')
plt.draw()

0 50 100 150 200 250

time (s)

10

20

30

40

50

te
m
p
er
at
u
re
(C
)

Figure 4.1. Raw temperature data over time.

This is something like what we might see for continuous measurement data.
Now, the histogram.

fig, ax = plt.subplots()
ax.hist(signal_a, bins=30, density=True, alpha=0.5)
plt.xlabel('temperature (C)')
plt.ylabel('probability')
plt.draw()

64 Chapter 4

10 20 30 40 50

temperature (C)

0.00

0.01

0.02

0.03

0.04

0.05

p
ro
b
ab
il
it
y

Figure 4.2. Raw temperature data histogram.

This sucks because we plot a frequency distribution to tell us about the random
variation, but this data includes the sinusoid.

Sample Mean, Variance, and Standard Deviation To compute the sample
mean � and standard deviation B for each sample in the period, we must “pick
out” the nT data points that correspond to each other. Currently, they’re in one
long 1 × n array signal_a. It is helpful to reshape the data so it is in an nT × np
array, which each row corresponding to a new period. This leaves the correct
points aligned in columns. It is important to note that we can do this “folding”
operation only when we know rather precisely the period of the underlying
sinusoid. It is given in the problem that it is a controlled experiment variable. If
we did not know it, we would have to estimate it, too, from the data.
Reshape data for sample mean, variance, and standard deviation calculations

with

signal_ar = signal_a[:-1].reshape((nT, np_))

Compute sample mean, variance, and standard deviations with

mu_a = np.array([np.mean(col) for col in signal_ar.T])
var_a = np.array([np.var(col) for col in signal_ar.T])
s_a = np.array([np.std(col) for col in signal_ar.T])

Statistics 65

Composite Frequency Distribution The columns represent samples. We want
to subtract the mean from each column. We use repmat to reproduce mu_a in nT
rows so it can be easily subtracted.

signal_arz = signal_ar - mu_a[np.newaxis,:]
x_a = np.linspace(-15, 15, 100)
pdfit_a = norm.pdf(x_a, loc=0, scale=s)
pdf_a = norm.pdf(x_a, loc=0, scale=s)

Now that all samples have the same mean, we can lump them into one big bin
for the frequency distribution.
Plot composite frequency distribution with a probability distribution fit and

the original probability distribution used to generate the data.

fig,ax = plt.subplots()
ax.hist(signal_arz.ravel(), bins=int(s * np.sqrt(nT)), density=True, alpha=0.5)
ax.plot(x_a, pdfit_a, 'b-', linewidth=2, label='pdf est.')
ax.plot(x_a, pdf_a, 'g--', linewidth=2, label='pdf')
plt.xlabel('Zero-mean temperature (C)')
plt.ylabel('Probability mass/density')
plt.legend()
plt.draw()

−15 −10 −5 0 5 10 15

Zero-mean temperature (C)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro
b
ab
il
it
y
m
as
s/
d
en
si
ty

pdf est.

pdf

Figure 4.3. Composite frequency distribution of zero-mean temperature data.

Means Comparison The sample mean of means is simply the following:

mu_mu = np.mean(mu_a)

66 Chapter 4

The standard deviation that works as an error bar, which should reflect how
well we can estimate the point plotted, is the standard deviation of themeans. It is
difficult to compute this directly for a nonstationary process. We use the estimate
given above and improve upon it by using the mean of standard deviations
instead of a single sample’s standard deviation.

s_mu = np.mean(s_a) / np.sqrt(nT)

Plot sample mean of means with an error bar as follows:

fig,ax = plt.subplots()
ax.bar(['$\overline{\overline{X}}$'], [mu_mu], yerr=s_mu, color='b', capsize=5)
plt.xlabel('Sample Mean of Means')
plt.draw()

-

Sample Mean of Means

0

5

10

15

20

25

30

35

Figure 4.4. Sample mean of means with error bar.

Standard Deviations Comparison The sample mean of standard deviations is
simply the following:

mu_s = np.mean(s_a)

The standard deviation that works as an error bar, which should reflect how
well we can estimate the point plotted, is the standard deviation of the standard
deviations. We can compute this directly.

s_s = np.std(s_a)

Plot sample mean of standard deviations with error bar as follows:

Statistics 67

fig,ax = plt.subplots()
ax.bar(['$\overline{S_X}$'], [mu_s], yerr=s_s, color='b', capsize=5)
plt.xlabel('Sample Mean of Sample Standard Deviations')
plt.draw()

(-

Sample Mean of Sample Standard Deviations

0

1

2

3

4

Figure 4.5. Sample mean of sample standard deviations with error bar.

Plot a Period with Error Bars Plotting the data with error bars is fairly straight-
forward. The main question is “which standard deviation?” Since we’re plotting
the means, it makes sense to plot the error bars as a single sample standard
deviation of the means.
Plot sample means over a single period with error bars as follows:

fig,ax = plt.subplots()
ax.errorbar(t_a[:np_], mu_a, yerr=s_a, fmt='o-', capsize=2, label='sample mean', color='b')
t_a2 = np.linspace(0, 1 / f, 101)
ax.plot(t_a2, dc + a * np.sin(2 * np.pi * f * t_a2), 'r-', label='population mean')
plt.xlim([t_a[0], t_a[np_ - 1]])
plt.xlabel('Folded time (s)')
plt.ylabel('Temperature (C)')
plt.legend()
plt.show() # Show all the plots

68 Chapter 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Folded time (s)

20

30

40

50

T
em

p
er
at
u
re
(C
)

population mean

sample mean

Figure 4.6. Sample means over a single period with error bars.

4.3 Confidence LINK
IU

One really ought to have it to give a lecture named it, but we’ll give it
a try anyway. Confidence is used in the common sense, although we
do endow it with a mathematical definition to scare business majors, who aren’t
actually impressed, but indifferent. Approximately: if, under some reasonable
assumptions (probabilistic model), we estimate the probability of some event to be
%%, we say we have %% confidence in it. I mean, business majors are all, “Supply
and demand? Let’s call that a ‘law,’ ” so I think we’re even.
So we’re back to computing probability from distributions—probability density

functions (PDFs) and probability mass functions (PMFs). Usually we care most
about estimating the mean of our distribution. Recall from the previous lecture
that when several samples are taken, each with its own mean, the mean is itself a
random variable—with a mean, of course. Meanception.
But the mean has a probability distribution of its own. The central limit theorem

has as one of its implications that, as the sample size # gets large, regardless of the
sample distributions, this distribution of means approaches the Gaussian distribution.
But sometimes I always worry I’m being lied to, so let’s check.

https://math.ricopic.one/iu
https://math.ricopic.one/iu
http://ricopic.one/resources/inception.gif
http://ricopic.one/resources/mind_blown.gif

Statistics 69

4.3.1 Checking the Central Limit Theorem

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

Generate Data Generate some data to test the central limit theorem {#generate-
some-data-to-test-the-central-limit-theorem h=“3y”}
Data can be generated by constructing an array using a (seeded for consistency)

random number generator. Let’s use a uniformly distributed PDF between 0 and 1.

N = 150 # Sample size (number of measurements per sample)
M = 120 # Number of samples
n = N * M # Total number of measurements
mu_pop = 0.5 # Because it's a uniform PDF between 0 and 1
np.random.seed(11) # Seed the random number generator
signal_a = np.random.rand(N, M) # Uniform PDF
#
Let's take a look at the data by plotting the first ten samples
(columns) versus index, as shown in the figure below

samples_to_plot = 10
fig, ax = plt.subplots()
for j in range(samples_to_plot):

ax.plot(signal_a[:, j], 'o-', markersize=3)
plt.xlabel('index')
plt.ylabel('measurement')
plt.draw()

70 Chapter 4

0 20 40 60 80 100 120 140

index

0.0

0.2

0.4

0.6

0.8

1.0

m
ea
su
re
m
en
t

Figure 4.7. Raw data with colors corresponding to samples.

This is something like what we might see for continuous measurement data. Now
make a histogram of each sample:

c = plt.cm.jet(np.linspace(0, 1, samples_to_plot)) # Color array
fig, ax = plt.subplots()
for j in range(samples_to_plot):

plt.hist(signal_a[:, j],
bins=30, # Number of bins
color=c[j],
alpha=0.3,
density=True) # For PMF

plt.xlim([-0.05, 1.05])
plt.xlabel('Measurement')
plt.ylabel('Probability')
plt.draw()

Statistics 71

0.0 0.2 0.4 0.6 0.8 1.0

Measurement

0.0

0.5

1.0

1.5

2.0

P
ro
b
ab
il
it
y

Figure 4.8. Histograms of the approximately uniform distribution of each sample
(color).

This isn’t a great plot, but it shows roughly that each sample is fairly uniformly
distributed.

Sample Statistics Now let’s check out the sample statistics. We want the sample
mean and standard deviation of each column. Let’s use the built-in functions mean
and std.
mu_a = np.mean(signal_a, axis=0) # Mean of each column
s_a = np.std(signal_a, axis=0) # Standard deviation of each column

Now we can compute the mean statistics, both the mean of the mean - and the
standard deviation of the mean B

-
, which we don’t strictly need for this part, but

we’re curious. We choose to use the direct estimate instead of the B-/
√
formula,

but they should be close.

mu_mu = np.mean(mu_a)
s_mu = np.std(mu_a)

The Truth about SampleMeans It’s the moment of truth. Let’s plot the histogram
of the sample means as follows:

72 Chapter 4

fig, ax = plt.subplots()
plt.hist(mu_a,

bins=30, # You can adjust the number of bins as needed
density=True) # For PMF

plt.xlabel('Measurement')
plt.ylabel('Probability')
plt.draw()

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58

Measurement

0

5

10

15

20

P
ro
b
ab
il
it
y

Figure 4.9. Histogram of the approximately normal distribution of the means.

This looks like a Gaussian distribution about the mean of means, so I guess the
central limit theorem is legit.

Gaussian and Probability We already know how to compute the probability % a
value of a random variable - lies in a certain interval from a PMF or PDF (the sum
or the integral, respectively). This means that, for sufficiently large sample size #
such that we can assume from the central limit theorem that the sample means G8
are normally distributed, the probability a sample mean value G8 is in a certain interval

is given by integrating the Gaussian PDF. The Gaussian PDF for random variable
. representing the sample means is

5 (H)= 1

�
√

2�
exp
−(H −�)2

2�2
.

where � is the population mean and � is the population standard deviation.
The integral of 5 over some interval is the probability a value will be in that

interval. Unfortunately, that integral is uncool. It gives rise to the definition of the
error function, which, for the Gaussian random variable ., is

Statistics 73

erf(H1)=
1
√
�

ˆ H1

−H1
4−C

2
3C.

This expresses the probability a sample mean being in the interval [−H1 , H1] if . has
mean 0 and variance 1/2.
Python has the error function in the scipy.special package. Let’s plot the error

function:

from scipy.special import erf
y_a = np.linspace(0, 3, 100)
fig, ax = plt.subplots()
ax.plot(y_a, erf(y_a), linewidth=2)
plt.grid(True)
plt.xlabel(r'Interval bound y_b')
plt.ylabel(r'Error function $\text{erf}(y_b)$')
plt.draw()

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Interval bound H1

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r
fu
n
ct
io
n
er
f(H

1
)

Figure 4.10. Error function for Gaussian random variable.

We could deal directly with the error function, but most people don’t and we’re
weird enough, as it is. Instead, people use theGaussian cumulative distribution

function (CDF) Φ :R→R, which is defined as

Φ(I)= 1
2

(
1+ erf

(
I√
2

))
and which expresses the probability of a Gaussian random variable / with mean 0
and standard deviation 1 taking on a value in the interval (−∞, I]. The Gaussian
CDF and PDF are plotted below.

74 Chapter 4

from scipy.stats import norm
z_a = np.linspace(-3, 3, 300)
threshold = 1.5
a_pdf = lambda z: (z < threshold) * norm.pdf(z, 0, 1)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 12)) # Two subplots
ax1.fill_between(z_a, a_pdf(z_a), color=[.8, .8, .8])
ax1.plot(z_a, norm.pdf(z_a, 0, 1), linewidth=2)
ax1.grid(True)
ax1.set_xlabel(r'z')
ax1.set_ylabel(r'Gaussian PDF $f(z)$')
ax1.text(1.5, norm.pdf(1.5, 0, 1) + .01, r'z_b')
ax1.legend([r'$\Phi(z_b)$', r'$f(z)$'])
ax2.plot(z_a, 1/2 * (1 + erf(z_a / np.sqrt(2))), linewidth=2)
ax2.grid(True)
ax2.set_xlabel(r'interval bound z_b')
ax2.set_ylabel(r'Gaussian CDF $\Phi(z_b)$')
plt.show()

−3 −2 −1 0 1 2 3
I

0.0

0.2

0.4

G
au
ss
ia
n
P
D
F
5(
I
)

I1

Φ(I1)
5 (I)

−3 −2 −1 0 1 2 3

interval bound I1

0.0

0.5

1.0

G
au
ss
ia
n
C
D
F
Φ
(I
1
)

Figure 4.11. Gaussian PDF and CDF for I-scores.

Values can be taken directly from the graph, but it’s more accurate to use the
table of values in appendix A.1.
That’s great and all, but occasionally (always)we haveGaussian randomvariables

with nonzero means and nonunity standard deviations. It turns out we can shift
any Gaussian random variable by its mean and scale it by its standard deviation to
make it have zero mean and standard deviation. We can then use Φ and interpret
the results as being relative to the mean and standard deviation, using phrases like
“the probability it is within two standard deviations of its mean.” The transformed

Statistics 75

random variable / and its values I are sometimes called the z-score. For a particular
value G of a random variable -, we can compute its I-score (or value I of random
variable /) with the formula

I =
G −�-
�-

and compute the probability of - taking on a value within the interval, say,
G ∈ [G1− , G1+] from the table. (Sample statistics - and (- are appropriate when
population statistics are unknown.)
For instance, compute the probability a Gaussian random variable - with �- = 5

and �- = 2.34 takes on a value within the interval G ∈ [3, 6].
1. Compute the I-score of each endpoint of the interval:

I3 =
3−�-
�-

≈−0.85

I6 =
6−�-
�-

≈ 0.43.

2. Look up the CDF values for I3 and I6, which are Φ(I3)= 0.1977 and Φ(I6)=
0.6664. 3. The CDF values correspond to the probabilities G < 3 and G < 6.
Therefore, to find the probability G lies in that interval, we subtract the lower
bound probability:

%(G ∈ [3, 6])=%(G < 6) −%(G < 3)
=Φ(6) −Φ(3)
≈ 0.6664− 0.1977

≈ 0.4689.

So there is a 46.89 percent probability, and therefore we have 46.89 percent
confidence, that G ∈ [3, 6].

Often we want to go the other way, estimating the symmetric interval [G1− , G1+]
for which there is a given probability. In this case, we first look up the I-score
corresponding to a certain probability. For concreteness, given the same population
statistics above, let’s find the symmetric interval [G1− , G1+] over which we have 90
percent confidence. From the table, we want two, symmetric I-scores that have
CDF-value difference 0.9. Or, in maths,

Φ(I1+) −Φ(I1−)= 0.9 and I1+ =−I1−.
Due to the latter relation and the additional fact that the Gaussian CDF has
antisymmetry,

Φ(I1+) +Φ(I1−)= 1.

76 Chapter 4

Adding the two Φ equations, we get

Φ(I1+)= 1.9/2
= 0.95

and Φ(I1−)= 0.05. From the table, these correspond (with a linear interpolation) to
I1 = I1+ =−I1− ≈ 1.645. All that remains is to solve the I-score formula for G:

G =�- + I�- .
From this,

G1+ =�- + I1+�- ≈ 8.849

G1− =�- + I1−�- ≈ 1.151.

and - has a 90 percent confidence interval [1.151, 8.849].

Example 4.3

Consider the data set generated above. What is our 95% confidence interval in
our estimate of the mean?

Assuming we have a sufficiently large data set, the distribution of means is
approximately Gaussian. Following the same logic as above, we need I-score
that gives an upper CDF value of (1+ 0.95)/2= 0.975. From the table, we obtain
the I1 = I1+ =−I1−, below.
z_b = 1.96

Now we can estimate the mean using our sample and mean statistics,

- =- ± I1(- . (4.1)

mu_x_95 = mu_mu + np.array([-z_b,z_b])*s_mu

[0.4526 0.5449]

This is our 95 percent confidence interval in our estimate of the mean.

Statistics 77

4.4 Student Confidence LINK
IC

The central limit theorem tells us that, for large sample size # , the
distribution of the means is Gaussian. However, for small sample
size, the Gaussian isn’t as good of an estimate. Student’s t-distribution is superior
for lower sample size and equivalent at higher sample size. Technically, if the
population standard deviation �- is known, even for low sample size we should
use the Gaussian distribution. However, this rarely arises in practice, so we can
usually get away with an “always t” approach.
Away that the t-distribution accounts for low-# is by having an entirely different

distribution for each # (seems a bit of a cheat, to me). Actually, instead of # , it uses
the degrees of freedom �, which is # minus the number of parameters required to
compute the statistic. Since the standard deviation requires only the mean, for most
of our cases, �=# − 1.
As with the Gaussian distribution, the t-distribution’s integral is difficult to

calculate. Typically, we will use a t-table, such as the one given in appendix A.2.
There are three points of note.

1. Since we are primarily concernedwith going from probability/confidence val-
ues (e.g. %% probability/confidence) to intervals, typically there is a column
for each probability.

2. The extra parameter � takes over one of the dimensions of the table because
three-dimensional tables are illegal.

3. Many of these tables are “two-sided,” meaning their t-scores and probabilities
assume you want the symmetric probability about the mean over the interval
[−C1 , C1], where C1 is your t-score bound.

Consider the following example.

Example 4.4

Write a Python script to generate a data set with 200 samples and sample sizes
∈ {10, 20, 100} using any old distribution. Compare the distribution of the
means for the different # . Use the sample distributions and a t-table to compute
99% confidence intervals.

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt

Generate the data set.

https://math.ricopic.one/ic
https://math.ricopic.one/ic

78 Chapter 4

confidence = 0.99 # Requirement
M = 200 # Number of samples
N_a = [10, 20, 100] # Sample sizes
mu = 27 # Population mean
sigma = 9 # Population standard deviation
np.random.seed(1) # Seed random number generator
data_a = mu + sigma * np.random.randn(N_a[-1], M) # Generate normal data
print(data_a[:10, :5]) # Check 10 rows and five columns

[[41.61910827 21.49419228 22.24645423 17.3432824 34.78866866]
[23.39209627 34.41605057 21.93925112 44.59390268 15.012435]
[15.24119334 27.68742432 30.30508632 38.09609273 23.19428735]
[17.34332149 31.4564275 18.43144109 22.33669003 13.84736756]
[34.32908816 34.02422937 13.82351784 25.60957926 26.16810913]
[25.62087454 5.10742339 31.57185903 24.08370904 13.40031053]
[22.14870678 32.79689989 28.65270217 26.22215814 25.07410997]
[28.70278877 38.01542408 24.29162355 29.26178669 35.35461193]
[29.61904088 36.67409774 20.7197109 21.79506855 19.37292716]
[15.22825791 40.25156676 27.67388488 10.91758137 28.48689528]]

Compute the means for different sample sizes.

mu_a = np.full((len(N_a), M), np.nan)
for i in range(len(N_a)):

mu_a[i, :] = np.mean(data_a[:N_a[i], :M], axis=0)

Plot a histogram of the distribution of the means.

fig, ax = plt.subplots()
for i in range(len(N_a)):

plt.hist(mu_a[i, :], bins=30, alpha=0.5, label=f'Sample size {N_a[i]}')
plt.xlabel('Mean Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()

Statistics 79

20 22 24 26 28 30 32 34

Mean Value

0

5

10

15

20

F
re
q
u
en
cy

Sample size 10

Sample size 20

Sample size 100

Figure 4.12. Histogram of the distribution of the means for different sample
sizes.

It makes sense that the larger the sample size, the smaller the spread. A quan-
titative metric for the spread is, of course, the standard deviation of the means
for each sample size.

S_mu = np.std(mu_a, axis=1, ddof=0)
print(S_mu)

[2.92548459 2.08250569 0.97864856]

Look up t-table values or use scipy to compute the t-value for different sample
sizes and 99 percent confidence. Use these, the mean of means, and the standard
deviation of means to compute the 99 percent confidence interval for each # .

from scipy.stats import t
t_a = t.ppf(confidence, np.array(N_a) - 1) # t-value for confidence
for i in range(len(N_a)):

interval = np.mean(mu_a[i, :]) + np.array([-1, 1]) * t_a[i] * S_mu[i]
print(f'interval for N = {N_a[i]}: {interval}')

interval for N = 10: [19.04354748 35.55169379]
interval for N = 20: [21.81853996 32.39551634]
interval for N = 100: [24.77231819 29.40055444]

As expected, the larger the sample size, the smaller the interval over which
we have 99 percent confidence in the estimate.

80 Chapter 4

4.5 Regression LINK
2L

Suppose we have a sample with two measurands: (1) the force �
through a spring and (2) its displacement - (not from equilibrium).
We would like to determine an analytic function that relates the variables, perhaps
for prediction of the force given another displacement.
There is some variation in the measurement. Let’s say the following is the sample.

X_a = 1e-3 * np.array(
[10, 21, 30, 41, 49, 50, 61, 71, 80, 92, 100]

) # m
F_a = np.array(

[50.1, 50.4, 53.2, 55.9, 57.2, 59.9, 61.0, 63.9, 67.0, 67.9, 70.3]
) # N

Let’s take a look at the data.

fig, ax = plt.subplots()
p = ax.plot(X_a * 1e3, F_a, '.b', markersize=15)
ax.set_xlabel(r'X (mm)')
ax.set_ylabel(r'F (N)')
ax.set_xlim([0, np.max(X_a * 1e3)])
ax.grid(True)
plt.draw()

0 20 40 60 80 100

- (mm)

50

55

60

65

70

�
(N
)

Figure 4.13. Force � as a function of displacement -.

How might we find an analytic function that agrees with the data? Broadly, our
strategy will be to assume a general form of a function and use the data to set

https://math.ricopic.one/2l
https://math.ricopic.one/2l

Statistics 81

the parameters in the function such that the difference between the data and the
function is minimal.
Let H be the analytic function that we would like to fit to the data. Let H8 denote

the value of H(G8), where G8 is the 8th value of the random variable - from the
sample. Then we want to minimize the differences between the force measurements
�8 and H8 .
From calculus, recall that we can minimize a function by differentiating it and

solving for the zero-crossings (which correspond to local maxima or minima).
First,we need such a function tominimize. Perhaps the simplest, effective function

� is constructed by squaring and summing the differences we want to minimize,
for sample size # :

�(G8)=
#∑
8=1

(�8 − H8)2

(recall that H8 = H(G8), which makes � a function of G).
Now the form of H must be chosen. We consider only <th-order polynomial

functions H, but others can be used in a similar manner:

H(G)= 00 + 01G + 02G
2 + · · · + 0<G< .

If we treat � as a function of the polynomial coefficients 0 9 , i.e.

�(00 , 01 , · · · , 0<),
and minimize � for each value of G8 , we must take the partial derivatives of � with
respect to each 0 9 and set each equal to zero:

%�

%00
= 0,

%�

%01
= 0, · · · , %�

%0<
= 0.

This gives us # equations and < + 1 unknowns 0 9 . Writing the system in matrix
form, 

1 G1 G2
1 · · · G<1

1 G2 G2
2 · · · G<2

1 G3 G2
3 · · · G<3

...
...

...
. . .

...

1 G# G2
#
· · · G<

#

︸ ︷︷ ︸
�#×(<+1)



00

01

02
...

0<

︸︷︷︸
a(<+1)×1

=



�1

�2

�3
...

�#

︸︷︷︸
b#×1

.

Typically # >< and this is an overdetermined system. Therefore, we usually can’t
solve by taking �−1 because � doesn’t have an inverse!
Instead, we either find theMoore-Penrose pseudo-inverse�† and have a =�†b as the

solution, which is inefficient (even with NumPy’s linalg.pinv() function)—or we

82 Chapter 4

can approximate b with an algorithm such as that used in the least-squaresmethod,
which has Numpy function linalg.lstsq(). We’ll use the latter method.

Example 4.5

Use Numpy to find the least-squares polynomial fit for the sample. There’s the
sometimes-difficult question, “What order should we fit?” Let’s try out several
and see what the squared-differences function � gives.

Begin by writing a function that takes the sample data and the order of the
polynomial fit and returns the coefficients of the polynomial.

def poly_fit(X, F, order):
A = np.vander(X, order + 1, increasing=True) # Vandermonde matrix

This is the matrix A in the system of equations
return np.linalg.lstsq(A, F, rcond=None)[0] # Coefficients

Fit the data with polynomials of orders 1, 3, 5, 7, and 9.

orders = [1, 3, 5, 7, 9]
coefficients = [poly_fit(X_a, F_a, order) for order in orders]

Now we can plot the data and the fitted polynomials.

fig, ax = plt.subplots()
p = ax.plot(X_a * 1e3, F_a, '.b', markersize=15)
x = np.linspace(np.min(X_a), np.max(X_a), 100)
for i, order in enumerate(orders):

y = np.polyval(coefficients[i][::-1], x)
ax.plot(x * 1e3, y, label=f'Order {order}')

ax.set_xlabel(r'X (mm)')
ax.set_ylabel(r'F (N)')
ax.legend()
plt.draw()

Statistics 83

20 40 60 80 100

- (mm)

50

55

60

65

70

�
(N
)

Order 1

Order 3

Order 5

Order 7

Order 9

Figure 4.14. Data and fitted polynomials of different orders.

The plot shows the data points and the fitted polynomials of different orders.
The higher-order polynomials seem to fit the data better, but they may be over-
fitting. We can quantify the goodness of fit by calculating the sum of squared
differences � for each order.

D = []
for i, order in enumerate(orders):

y = np.polyval(coefficients[i][::-1], X_a)
D.append(np.sum((F_a - y) ** 2))

Let’s plot the sum of squared differences as a function of the order of the
polynomial.

fig, ax = plt.subplots()
p = ax.plot(orders, D, '.-b')
ax.set_xlabel('Order of polynomial')
ax.set_ylabel(r'$D(a_0,a_1,\cdots,a_m)$')
ax.set_xticks(orders)
plt.show()

84 Chapter 4

1 3 5 7 9

Order of polynomial

3

4

5

6

7

8

�
(0

0
,0

1
,·
··
,0
<
)

Figure 4.15. Sum of squared differences as a function of polynomial order.

The plot shows that the sum of squared differences decreases with the order
of the polynomial. However, the decrease is less pronounced for higher-order
polynomials. This suggests that the higher-order polynomials are overfitting
the data. The optimal order of the polynomial is the one that gives the best fit
without overfitting.

Statistics 85

4.6 Problems LINK
L5

Problem 4.1 LINKBREW You need to know the duration of time a certain stage of a
brewing process takes. You set up an automated test environment that repeats the
test 100 times, recorded in the following JSON1 data file: https://math.ricopic.one/bt.
Perform the following analysis.
a. Download and parse the JSON file (it contains a single array).
b. Estimate the duration of the process from the sample.
c. Choose and justify an assumed probability density function for the random

variable duration.
d. Use this PDF model to compute a 99 percent confidence interval for your

duration estimate.
e. Compute your duration confidence interval for the range of confidence

values [85, 99.99] percent.2
f. Plot the confidence intervals over the range of confidence in said intervals.

Problem 4.2 LINKLABORITORIUM Use linear regression techniques to find the values
of 0, 1, 2, and 3, in a cubic function of the form,

5 (G)= 0G3 + 1G2 + 2G + 3,
using the data below.

G 5 (G)
-2.0 -4.7
-1.5 -1.9
-1.0 1.5
-0.5 1.5
0.0 1.4
0.6 0.3
1.1 -1.5
1.6 0.0
2.1 0.6
2.6 4.2

1. JSON is a simple and common programming language-independent data format. For parsing it with
Matlab, see jsondecode here: https://math.ricopic.one/75. For parsing it with Python, see the module
json here: https://math.ricopic.one/jb.
2. Consider using a I- or C-score inverse CDF lookup function like t.ppf from scipy.stats.

https://math.ricopic.one/l5
https://math.ricopic.one/l5
https://math.ricopic.one/brew
https://math.ricopic.one/bt
https://math.ricopic.one/laboritorium
https://math.ricopic.one/75
https://math.ricopic.one/jb

86 Chapter 4

Problem 4.3 LINKROBOTIZATION Use linear regression techniques to find the value of
� in the function,

5 (C)= 1− 4 −C
2

�

Using the data below.

C 5 (C)
0.1 0.02
0.6 0.34
1.1 0.74
1.6 0.94
2.1 0.98

Problem 4.4 LINKTIRED There are 7 students enrolled in MME 502. If every week 5
students comes to class, for how many weeks could a unique set of 5 students come
to class?

Problem 4.5 LINKSTRANGE Use linear regression techniques to find $ and) in the
function, 5 (C)= sin($C +)) using the data below.

C 5 (C)
0.0 0.53
0.1 0.73
0.2 0.91
0.5 0.92
0.6 0.83
0.7 0.65
0.8 0.42
0.9 0.15
1.0 -0.1
1.1 -0.35
1.2 -0.58
1.3 -0.82
1.4 -0.91
1.7 -0.86
1.8 -0.76
1.9 -0.54

Note: there are an infinite number of solutions to the inverse sine function, sin−1(G)=
±H + =� where = ∈Z. You will have to utilize this definition to get your data in a
linear form for fitting.

https://math.ricopic.one/robotization
https://math.ricopic.one/tired
https://math.ricopic.one/strange

Statistics 87

Problem 4.6 LINKThe steady-state temperature) of steam at the outlet of a pipe was
measured with a probe. The number of samples " was 20 and the size # of each
sample was 100. The data can be downloaded at ricopic.one/mathematical_foun-
dations/source/dedicated.json. Download the data and put it in your working
directory for analysis.
Estimate the sample mean), sample variance () , and a 99 percent confidence

interval for your estimation of the mean. The data is a list of lists of dimension
×" (100-by-20). If you are using Python, load the data with

import numpy as np
import json
f = open('dedicated.json',)
Tdata = np.array(json.load(f))
print(f'data excerpt:\n{Tdata[0:3,0:4]}')

data excerpt:
[[241.97683415 213.94281418 220.42666213 225.29771168]
[241.45909599 222.00636196 214.96718074 246.37793887]
[230.92953215 217.66017678 227.38480454 210.21311645]]

https://math.ricopic.one/
https://ricopic.one/mathematical_foundations/source/dedicated.json
https://ricopic.one/mathematical_foundations/source/dedicated.json

5 Vector Calculus LINK
X2

A great many physical situations of interest to engineers can be described by calcu-
lus. It can describe how quantities continuously change over (say) time and gives
tools for computing other quantities. We assume familiarity with the fundamentals
of calculus: limit, series, derivative, and integral. From these and a basic grasp of
vectors, we will outline some of the highlights of vector calculus. Vector calculus is
particularly useful for describing the physics of, for instance, the following.

mechanics of particles wherein is studied the motion of particles and the forcing
causes thereof

rigid-body mechanics wherein is studied the motion, rotational and translational,
and its forcing causes, of bodies considered rigid (undeformable)

solid mechanics wherein is studied the motion and deformation, and their forcing
causes, of continuous solid bodies (those that retain a specific resting shape)

fluid mechanics wherein is studied the motion and its forcing causes of fluids
(liquids, gases, plasmas)

heat transfer wherein is studied the movement of thermal energy through and
among bodies

electromagnetism wherein is studied the motion and its forcing causes of electri-
cally charged particles

This last example was in fact very influential in the original development of both
vector calculus and complex analysis.1 It is not an exaggeration to say that the
topics above comprise the majority of physical topics of interest in engineering.
A good introduction to vector calculus is given by (Kreyszig 2011; Chapters 9 10).

Perhaps the most famous and enjoyable treatment is given by (Schey 2005) in the
adorably titled Div, Grad, Curl and All that.
It is important to note that in much of what follows, we will describe (typically

the three-dimensional space of our lived experience) as a euclidean vector space:

1. For an introduction to complex analysis, see (Kreyszig 2011; Part D).

https://math.ricopic.one/x2
https://math.ricopic.one/x2

90 Chapter 5

an =-dimensional vector space isomorphic to R= . As we know from linear algebra,
any vector v ∈R= can be expressed in any number of bases. That is, the vector v is
a basis-free object with multiple basis representations. The components and basis
vectors of a vector change with basis changes, but the vector itself is invariant.
A coordinate system is in fact just a basis. We are most familiar, of course, with
Cartesian coordinates, which is the specific orthonormal basis b for R= :

b1 =


1
0
...

0


, b2 =


0
1
...

0


, · · · , b= =


0
0
...

1


.

Manifolds are spaces that appear locally as R= , but can be globally rather different
and can describe non-euclidean geometry wherein euclidean geometry’s parallel
postulate is invalid. Calculus on manifolds is the focus of differential geometry, a
subset of which we can consider our current study. A motivation for further study
of differential geometry is that it is very convenient when dealing with advanced
applications of mechanics, such as rigid-body mechanics of robots and vehicles. A
very nice mathematical introduction is given by (Lee 2012) and (Bullo and Lewis
2005) give a compact presentation in the context of robotics.
Vector fields have several important properties of interest we’ll explore in this

chapter. Our goal is to gain an intuition of these properties and be able to perform
basic calculation.

5.1 Divergence, Surface Integrals, and Flux

5.1.1 Flux and Surface Integrals LINK
1L

Consider a surface (. Let r(D, E)= [G(D, E), H(D, E), I(D, E)] be a para-
metric position vector on a Euclidean vector space R3. Furthermore,
let L :R3→R3 be a vector-valued function of r and let n be a unit-normal vector on
a surface (. The surface integral ¨

(

L · n d((5.1)

which integrates the normal of L over the surface. We call this quantity the flux
of L out of the surface (. This terminology comes from fluid flow, for which the
flux is the mass flow rate out of (. In general, the flux is a measure of a quantity
(or field) passing through a surface. For more on computing surface integrals, see
Schey (2005; pp. 21-30) and Kreyszig (2011; § 10.6).

https://math.ricopic.one/1l
https://math.ricopic.one/1l

Vector Calculus 91

5.1.2 Continuity

Consider the flux out of a surface (that encloses a volume Δ+ , divided by that
volume:

1
Δ+

¨

(

L · n d(. (5.2)

This gives a measure of flux per unit volume for a volume of space. Consider its
physical meaning when we interpret this as fluid flow: all fluid that enters the
volume is negative flux and all that leaves is positive. If physical conditions are
such that we expect no fluid to enter or exit the volume via what is called a source
or a sink, and if we assume the density of the fluid is uniform (this is called an
incompressible fluid), then all the fluid that enters the volume must exit and we
get

1
Δ+

¨

(

L · n d(= 0. (5.3)

This is called a continuity equation, although typically this name is given to
equations of the form in the next section. This equation is one of the governing
equations in continuum mechanics.

5.1.3 Divergence

Let’s take the flux-per-volume as the volume Δ+→ 0 we obtain the following.

Equation 5.4 divergence: integral form

lim
Δ+→0

1
Δ+

¨

(

L · n d(.

This is called the divergence of L and is defined at each point in R3 by taking the
volume to zero about it. It is given the shorthand div L .
What interpretation can we give this quantity? It is a measure of the vector field’s

flux outward through a surface containing an infinitesimal volume. When we
consider a fluid, a positive divergence is a local decrease in density and a negative
divergence is a density increase. If the fluid is incompressible and has no sources or
sinks, we can write the continuity equation

div L = 0. (5.5)

92 Chapter 5

In the Cartesian basis, it can be shown that the divergence is easily computed
from the field

L = �G î + �H ĵ + �I k̂ (5.6)

as follows.

Equation 5.7 divergence: differential form

div L = %G�G + %H�H + %I�I

5.1.4 Exploring Divergence

Divergence is perhaps best explored by considering it for a vector field in R2. Such
a field L = �G î + �H ĵ can be represented as a “quiver” plot. If we overlay the quiver
plot over a “color density” plot representing div L , we can increase our intuition
about the divergence.
First, load some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify

Now we define some symbolic variables and functions.

x = sp.Symbol('x', real=True)
y = sp.Symbol('y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)

Rather than repeat code, let’s write a single function quiver_plotter_2D() to
make several of these plots.

def quiver_plotter_2D(
field={},
grid_width=3, grid_decimate_x=8, grid_decimate_y=8,
norm=Normalize(), density_operation='div',
print_density=True):

x, y = sp.symbols('x y', real=True)
F_x, F_y = sp.Function('F_x')(x, y), sp.Function('F_y')(x, y)
field_sub = field
Calculate density
den = F_x.diff(x) + F_y.diff(y) if density_operation == 'div' else None
if den is None:

Vector Calculus 93

raise ValueError(f'Unknown density operation: {density_operation}')
den_simp = den.subs(field_sub).doit().simplify()
if den_simp.is_constant():

print('Warning: density operator is constant (no density plot)')
if print_density:

print(f'The {density_operation} is:')
print(den_simp)

Lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = sp.lambdify((x, y), F_x.subs(field_sub), 'numpy')
F_y_fun = sp.lambdify((x, y), F_y.subs(field_sub), 'numpy')
if F_x_sub.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y) * np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y) * np.ones(x.shape)

if not den_simp.is_constant():
den_fun = sp.lambdify((x, y), den_simp, 'numpy')

Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not den_simp.is_constant():

den_num = den_fun(X, Y)
Plot
fig, ax = plt.subplots()
if not den_simp.is_constant():

cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()

dx, dy = grid_decimate_y, grid_decimate_x
plt.quiver(X[::dx, ::dy], Y[::dx, ::dy], F_x_num[::dx, ::dy],

F_y_num[::dx, ::dy], units='xy', scale=10)
plt.title(fr'$F(x, y) = \left[{sp.latex(F_x.subs(field_sub))},' +

fr'{sp.latex(F_y.subs(field_sub))}\right]$')
return fig, ax

Let’s inspect several cases.

fig, ax = quiver_plotter_2D(field={F_x: x**2, F_y: y**2})
plt.draw()

94 Chapter 5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [x2, y2]

10

5

0

5

10

Figure 5.1. Quiver plot of �(G, H)=
[
G2 , H2]

fig, ax = quiver_plotter_2D(field={F_x: x*y, F_y: x*y})
plt.draw()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [xy, xy]

10

5

0

5

10

Figure 5.2. Quiver plot of �(G, H)= [GH, GH]

fig, ax = quiver_plotter_2D(field={F_x: x**2 + y**2, F_y: x**2 + y**2})
plt.draw()

Vector Calculus 95

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [x2 + y2, x2 + y2]

10

5

0

5

10

Figure 5.3. Quiver plot of �(G, H)=
[
G2 + H2 , G2 + H2]

fig, ax = quiver_plotter_2D(
field={F_x: x**2/sp.sqrt(x**2+y**2), F_y: y**2/sp.sqrt(x**2+y**2)},
norm=SymLogNorm(linthresh=.3, linscale=.3)

)
plt.show()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) =

[
x2√
x2 + y2

,
y2√
x2 + y2

]

100

10 1010 1

100

Figure 5.4. Quiver plot of �(G, H)=
[
G2/

√
G2 + H2 , H2/

√
G2 + H2

]

96 Chapter 5

5.2 Curl, Line Integrals, and Circulation

5.2.1 Line Integrals LINK
YK

Consider a curve � in a Euclidean vector space R3. Let r(C)=
[G(C), H(C), I(C)] be a parametric representation of �. Furthermore, let
L :R3→R3 be a vector-valued function of r and let r′(C) be the tangent vector. The
line integral is ˆ

�

L(r(C)) · r′(C) dC (5.8)

which integrates L along the curve. For more on computing line integrals, see (Schey
2005; pp. 63-74) and (Kreyszig 2011; § 10.1 and 10.2).
If L is a force being applied to an object moving along the curve �, the line integral

is thework done by the force. More generally, the line integral integrates L along
the tangent of �.

5.2.2 Circulation

Consider the line integral over a closed curve �, denoted by˛

�

L(r(C)) · r′(C) dC. (5.9)

We call this quantity the circulation of L around �.
For certain vector-valued functions L , the circulation is zero for every curve. In

these cases (static electric fields, for instance), this is sometimes called the the law
of circulation.

5.2.3 Curl

Consider the division of the circulation around a curve in R3 by the surface area it
encloses Δ(,

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.10)

In a manner analogous to the operation that gaves us the divergence, let’s consider
shrinking this curve to a point and the surface area to zero,

lim
Δ(→0

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.11)

We call this quantity the “scalar” curl of L at each point in R3 in the direction normal

to Δ(as it shrinks to zero. Taking three (or = for R=) “scalar” curls in indepedent

https://math.ricopic.one/yk
https://math.ricopic.one/yk

Vector Calculus 97

normal directions (enough to span the vector space), we obtain the curl proper,
which is a vector-valued function curl :R3→R3.
The curl is coordinate-independent. In cartesian coordinates, it can be shown to

be equivalent to the following.

Equation 5.12 curl: differential form, cartesian coordinates

curl L =
[
%H�I − %I�H %I�G − %G�I %G�H − %H�G

]>

But what does the curl of L represent? It quantifies the local rotation of L about
each point. If L represents a fluid’s velocity, curl L is the local rotation of the fluid
about each point and it is called the vorticity.

5.2.4 Zero Curl, Circulation, and Path Independence

5.2.4.1 Circulation It can be shown that if the circulation of L on all curves is zero,
then in each direction n and at every point curl L = 0 (i.e. n · curl L = 0). Conversely,
for curl L = 0 in a simply connected region2, L has zero circulation.
Succinctly, informally, and without the requisite qualifiers above,

zero circulation⇒ zero curl (5.13)

zero curl + simply connected region⇒ zero circulation. (5.14)

5.2.4.2 Path Independence It can be shown that if the path integral of L on
all curves between any two points is path-independent, then in each direction n
and at every point curl L = 0 (i.e. n · curl L = 0). Conversely, for curl L = 0 in a simply
connected region, all line integrals are independent of path.
Succinctly, informally, and without the requisite qualifiers above,

path independence⇒ zero curl (5.15)

zero curl + simply connected region⇒path independence. (5.16)

5.2.4.3 And How They Relate It is also true that

path independence⇔ zero circulation. (5.17)

So, putting it all together, we get figure 5.5.

2. A region is simply connected if every curve in it can shrink to a point without leaving the region. An
example of a region that is not simply connected is the surface of a toroid.

98 Chapter 5

zero curl

zero circulation path independence

connectedness and

Figure 5.5. An implication graph relating zero curl, zero circulation, path independence,
and connectedness. Blue edges represent implication (0 implies 1) and black edges
represent logical conjunctions.

5.2.5 Exploring Curl

Curl is perhaps best explored by considering it for a vector field in R2. Such a field
in cartesian coordinates L = �G î + �H ĵ has curl

curl L =
[
%H0− %I�H %I�G − %G0 %G�H − %H�G

]>
=
[
0− 0 0− 0 %G�H − %H�G

]>
=
[
0 0 %G�H − %H�G

]>
. (5.18)

That is, curl L = (%G�H − %H�G)k̂ and the only nonzero component is normal to the
GH-plane. If we overlay a quiver plot of L over a “color density” plot representing
the k̂-component of curl L , we can increase our intuition about the curl. First, load
some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *

Now we define some symbolic variables and functions.

x = sp.Symbol('x', real=True)
y = sp.Symbol('y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)

We use a variation of the quiver_plotter_2D() from above to make several of
these plots.

Vector Calculus 99

def quiver_plotter_2D(
field={F_x: x*y, F_y: x*y},
grid_width=3,
grid_decimate_x=8,
grid_decimate_y=8,
norm=Normalize(),
density_operation='div',
print_density=True,

):
Define symbolics
x, y = sp.symbols('x y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)
field_sub = field
Compute density
if density_operation == 'div':

den = F_x.diff(x) + F_y.diff(y)
elif density_operation == 'curl':

den = F_y.diff(x) - F_x.diff(y) # in the k direction
else:

raise ValueError('div and curl are the only density operators')
den_simp = den.subs(field_sub).doit().simplify()
if den_simp.is_constant():

print('Warning: density operator is constant (no density plot)')
if print_density:

print(f'The {density_operation} is: {den_simp}')
Lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = sp.lambdify((x, y),F_x.subs(field_sub), 'numpy')
F_y_fun = sp.lambdify((x, y), F_y.subs(field_sub), 'numpy')
if F_x_sub.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y)*np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y)*np.ones(x.shape)

if not den_simp.is_constant():
den_fun = sp.lambdify((x, y), den_simp,'numpy')

Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not den_simp.is_constant():

den_num = den_fun(X, Y)

100 Chapter 5

Plot
fig, ax = plt.subplots()
if not den_simp.is_constant():
cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()

dx = grid_decimate_y
dy = grid_decimate_x
plt.quiver(
X[::dx,::dy],Y[::dx,::dy],
F_x_num[::dx,::dy], F_y_num[::dx,::dy],
units='xy', scale=10)

plt.title(fr'$F(x, y) = \left[{sp.latex(F_x.subs(field_sub))},' + \
fr'{sp.latex(F_y.subs(field_sub))} \right]$')

return fig, ax

Let’s inspect several cases.

fig, ax = quiver_plotter_2D(
field={F_x: 0, F_y: sp.cos(2*sp.pi*x)}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=10, grid_width=1

)
plt.draw()

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
F(x, y) = [0, cos (2πx)]

6

4

2

0

2

4

6

Figure 5.6. Quiver plot of �(G, H)= [0, cos(2�G)]

Vector Calculus 101

fig, ax = quiver_plotter_2D(
field={F_x: 0, F_y: x**2}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=20,

)
plt.draw()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [0, x2]

6

4

2

0

2

4

6

Figure 5.7. Quiver plot of �(G, H)=
[
0, G2]

fig, ax = quiver_plotter_2D(
field={F_x: y**2, F_y: x**2}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=20,

)
plt.draw()

102 Chapter 5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [y2, x2]

6

4

2

0

2

4

6

Figure 5.8. Quiver plot of �(G, H)=
[
H2 , G2]

fig, ax = quiver_plotter_2D(
field={F_x: -y, F_y: x}, density_operation='curl',
grid_decimate_x=6, grid_decimate_y=6,

)
plt.show()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) = [−y, x]

Figure 5.9. Quiver plot of �(G, H)= [−H, G]

Vector Calculus 103

5.3 Gradient

5.3.1 Gradient LINK
4J

The gradient grad of a scalar-valued function 5 :R3→R is a vector
field L :R3→R3; that is, grad 5 is a vector-valued function on R3. The
gradient’s local direction andmagnitude are those of the local maximum rate of
increase of 5 . This makes it useful in optimization (e.g., in the method of gradient
descent).
This principle tells us that nature’s laws quite frequently seem to be derivable by

assuming a certain quantity—called action—is minimized. Considering, then, that
the gradient supplies us with a tool for optimizing functions, it is unsurprising that
the gradient enters into the equations of motion of many physical quantities.
The gradient is coordinate-independent, but its coordinate-free definitions don’t

add much to our intuition.

Equation 5.19 gradient: cartesian coordinates

grad 5 =
[
%G 5 %H 5 %I 5

]>

5.3.2 Vector Fields from Gradients Are Special

Although all gradients are vector fields, not all vector fields are gradients. That
is, given a vector field L , it may or may not be equal to the gradient of any scalar-
valued function 5 . Let’s say of a vector field that is a gradient that it has gradience.3

Those vector fields that are gradients have special properties. Surprisingly, those
properties are connected to path independence and curl. It can be shown that iff
a field is a gradient, line integrals of the field are path independent. That is, for a
vector field,

gradience⇔path independence. (5.20)

Considering what we know from section 5.2 about path independence we can
expand figure 5.5 to obtain figure 5.10.

3. This is nonstandard terminology, but we’re bold.

https://math.ricopic.one/4j
https://math.ricopic.one/4j

104 Chapter 5

gradience

zero curl

zero circulation path independence

connectedness and

Figure 5.10. An implication graph relating gradience, zero curl, zero circulation, path
independence, and connectedness. Green edges represent implication (0 implies 1) and
black edges represent logical conjunctions.

One implication is that gradients have zero curl! Many important fields that describe
physical interactions (e.g., static electric fields, Newtonian gravitational fields) are
gradients of scalar fields called potentials.

5.3.3 Exploring Gradient

Gradient is perhaps best explored by considering it for a scalar field on R2. Such a
field in cartesian coordinates 5 (G, H) has gradient

grad 5 =
[
%G 5 %H 5

]>
(5.21)

That is, grad 5 = L = %G 5 î + %H 5 ĵ. If we overlay a quiver plot of L over a “color
density” plot representing the 5 , we can increase our intuition about the gradient.
First, load some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *

Now we define some symbolic variables and functions.

x, y = sp.symbols('x y', real=True)

Rather than repeat code, let’s write a single function grad_plotter_2D() to
make several of these plots.

Vector Calculus 105

def grad_plotter_2D(
field=x*y, grid_width=3, grid_decimate_x=8, grid_decimate_y=8,
norm=None, # Density plot normalization
scale=None, # Arrow length scale (auto)
print_vector=True, mask=False, # Mask vector lengths

):
Define symbolics
x, y = sp.symbols('x y', real=True)
field = sp.sympify(field)
Compute vector field
F_x = field.diff(x).simplify()
F_y = field.diff(y).simplify()
if field.is_constant():

print('Warning: field is constant (no plot)')
if print_vector:

print(f'The gradient is:')
print(sp.Array([F_x, F_y]))

Lambdify for numerics
F_x_fun = sp.lambdify((x, y), F_x, 'numpy')
F_y_fun = sp.lambdify((x, y), F_y, 'numpy')
if F_x.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y) * np.ones(x.shape)

if F_y.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y) * np.ones(x.shape)

if not field.is_constant():
den_fun = sp.lambdify((x, y), field, 'numpy')

Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not field.is_constant():

den_num = den_fun(X, Y)
Mask F_x and F_y
if mask:

masking_a = np.sqrt(np.square(F_x_num) + np.square(F_y_num))
F_x_num = np.ma.masked_where(masking_a > w / 5., F_x_num)
F_y_num = np.ma.masked_where(masking_a > w / 5., F_y_num)

Plot
if not field.is_constant():

fig, ax = plt.subplots()
cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()

106 Chapter 5

dx = grid_decimate_y
dy = grid_decimate_x
plt.quiver(

X[::dx, ::dy], Y[::dx, ::dy],
F_x_num[::dx, ::dy], F_y_num[::dx, ::dy],
units='xy', scale=scale

)
plt.title(f'$f(x,y) = {sp.latex(field)}$')
return fig, ax

return 1, 1

Let’s inspect several cases. While considering the following plots, remember that
they all have zero curl!

fig, ax = grad_plotter_2D(field=x)
plt.draw()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = x

3

2

1

0

1

2

3

Figure 5.11. Gradient of 5 (G, H)= G

fig, ax = grad_plotter_2D(field=x+y)
plt.draw()

Vector Calculus 107

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = x+ y

6

4

2

0

2

4

6

Figure 5.12. Gradient of 5 (G, H)= G + H

fig, ax = grad_plotter_2D(field=1)

5.3.3.1 Gravitational Potential Gravitational potentials have the form of
1/distance. Let’s check out the gradient.
fig, ax = grad_plotter_2D(

field=1/sp.sqrt(x**2+y**2),
norm=SymLogNorm(linthresh=.3, linscale=.3), mask=True,

)
plt.draw()

108 Chapter 5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = 1√

x2 + y2

100

101

Figure 5.13. Gradient of 5 (G, H)= 1/
√
G2 + H2

5.3.3.2 Conic Section Fields Gradients of conic section fields can be explored.
The following is called a parabolic field.

fig, ax = grad_plotter_2D(field=x**2)
plt.draw()

The following are called elliptic fields.

fig, ax = grad_plotter_2D(field=x**2 + y**2)
plt.draw()

Vector Calculus 109

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = x2 + y2

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 5.14. Gradient of 5 (G, H)= G2 + H2

fig, ax = grad_plotter_2D(field=-x**2 - y**2)
plt.draw()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = − x2 − y2

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Figure 5.15. Gradient of 5 (G, H)=−G2 − H2

The following is called a hyperbolic field.

fig, ax = grad_plotter_2D(field=x**2 - y**2)
plt.show()

110 Chapter 5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
f(x, y) = x2 − y2

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Figure 5.16. Gradient of 5 (G, H)= G2 − H2

5.4 Stokes and Divergence Theorems LINK
A4

Two theorems allow us to exchange certain integrals in R3 for others
that are easier to evaluate.

5.4.1 The Divergence Theorem

The divergence theorem asserts the equality of the surface integral of a vector field
L and the triple integral of div L over the volume + enclosed by the surface (in R3.
That is, ¨

(

L · n d(=
˚

+

div L d+.

Caveats are that + is a closed region bounded by the orientable4 surface (and
that L is continuous and continuously differentiable over a region containing + .
This theorem makes some intuitive sense: we can think of the divergence inside the
volume “accumulating” via the triple integration and equaling the corresponding
surface integral. For more on the divergence theorem, see (Kreyszig 2011; § 10.7)
and (Schey 2005; pp. 45-52).
A lovely application of the divergence theorem is that, for any quantity of con-

served stuff (mass, charge, spin, etc.) distributed in a spatialR3 with time-dependent
density � :R4→R and velocity field v :R4→R3, the divergence theorem can be

4. A surface is orientable if a consistent normal direction can be defined. Most surfaces are orientable,
but some, notably the Möbius strip, cannot be. See (Kreyszig 2011; § 10.6) for more.

https://math.ricopic.one/a4
https://math.ricopic.one/a4

Vector Calculus 111

applied to find that
%C�=− div(�v),

which is a more general form of a continuity equation, one of the governing
equations of many physical phenomena. For a derivation of this equation, see
(pp. 49-52).

5.4.2 The Kelvin-Stokes’ Theorem

The Kelvin-Stokes’ theorem asserts the equality of the circulation of a vector field
L over a closed curve � and the surface integral of curl L over a surface (that has
boundary �. That is, for r(C) a parameterization of � and surface normal n,˛

�

L(r(C)) · r′(C) dC =
¨
(

n · curl L d(.

Caveats are that (is piecewise smooth,5 its boundary � is a piecewise smooth
simple closed curve, and L is continuous and continuously differentiable over
a region containing (. This theorem is also somewhat intuitive: we can think of
the divergence over the surface “accumulating” via the surface integration and
equaling the corresponding circulation. For more on the Kelvin-Stokes’ theorem,
see (Kreyszig 2011; § 10.9) and (Schey 2005; pp. 93-102).

5.4.3 Related Theorems

Greene’s theorem is a two-dimensional special case of the Kelvin-Stokes’ theorem.
It is described by (Kreyszig 2011; § 10.9).
It turns out that all of the above theorems (and the fundamental theorem of

calculus, which relates the derivative and integral) are special cases of the general-
ized Stokes’ theorem defined by differential geometry. We would need a deeper
understanding of differential geometry to understand this theorem. For more, see
(Lee 2012; Ch. 16).

5. A surface is smooth if its normal is continuous everywhere. It is piecewise smooth if it is composed of a
finite number of smooth surfaces.

112 Chapter 5

5.5 Problems LINK
DH

Problem 5.1 LINKLIGHT Consider a vector field L :R3→R3 defined in Cartesian
coordinates (G, H, I) as

L = [G2 − H2 , H2 − I2 , I2 − G2]. (5.22)

a. Compute the divergence of L .
b. Compute the curl of L .
c. Prove that, in a simply connected region of X3, line integrals of L are path-

dependent.
d. Prove that L is not the gradient of a potential (scalar) function (i.e., that it

does not have gradience, as we’ve called it).

Problem 5.2 LINKHIKE The altitude of (G, H) points on a nearbymountain aremodeled
on the domain −2≤ G ≤ 2, −2≤ H ≤ 2 as,

5 (G, H)= 2− G
2

4
+ cos(�

2
H).

Using this model of the mountain:
a. Find the 3 dimensional path you would travel on if you were to start from

the trailhead at (G, H)= (−1,−1.5) and head in a straight line to the top of the
mountain at (0, 0).

b. Given the definition of work, =
´
� �(A) · 3A, write the equation for �(A) from

the acceleration of gravity and assuming a mass of 50 kg.
c. Solve for the work to climb the mountain on your path from part a.
d. Once you get to the trailhead your friend wants to take a different route that

they think will take less work. Prove that it takes the same amount of work,
no matter what route you take to the top of the mountain.

e. On your way up the mountain you notice you have altitude sickness at
location (−1,−0.75) and need to get to a lower altitude as quickly as possible.
What direction should you go to descend the fastest? Write your answer as
a vector pointing in the direction you should go.

Problem 5.3 LINKCRABRANGOON Consider a vector field L :R3→R3 defined in Carte-
sian coordinates (G, H, I) as

L =
[
−3G2 −3H2 0

]>
. (5.23)

a. Compute the divergence of L .
b. Compute the curl of L .

https://math.ricopic.one/dh
https://math.ricopic.one/dh
https://math.ricopic.one/light
https://math.ricopic.one/hike
https://math.ricopic.one/crabrangoon

Vector Calculus 113

c. Prove that, in a simply connected region of X3, line integrals of L are path-
independent.

d. Prove that L is the gradient of a potential (scalar) function (i.e., that it has
gradience, as we’ve called it).

e. Identify a potential function) for which L is the gradient. Is this the only
such function?

6 Fourier and Orthogonality LINK
X9

In this chapter we will explore Fourier series and transforms.

6.1 Fourier Series LINK
OF

Fourier series are mathematical series that can represent a periodic
signal as a sum of sinusoids at different amplitudes and frequencies.
They are useful for solving for the response of a system to periodic inputs. However,
they are probably most important conceptually: they are our gateway to thinking
of signals in the frequency domain—that is, as functions of frequency (not time).
To represent a function as a Fourier series is to analyze it as a sum of sinusoids
at different frequencies1 $= and amplitudes 0= . Its frequency spectrum is the
functional representation of amplitudes 0= versus frequency $= .
Let’s begin with the definition.

Definition 6.1

The Fourier analysis of a periodic function H(C) is, for = ∈N0, period), and angular
frequency $= = 2�=/),

00 =
2
)

ˆ
)

H(C)3C

0= =
2
)

ˆ
)

H(C) cos($=C)3C

1= =
2
)

ˆ
)

H(C) sin($=C)3C.

1. It’s important to note that the symbol $= , in this context, is not the natural frequency, but a frequency
indexed by integer =.

https://math.ricopic.one/x9
https://math.ricopic.one/x9
https://math.ricopic.one/of
https://math.ricopic.one/of

116 Chapter 6

The Fourier synthesis of a periodic function H(C)with analysis components 0= and
1= corresponding to $= is

H(C)= 00

2
+
∞∑
==1

0= cos($=C) + 1= sin($=C).

Let’s consider the complex form of the Fourier series, which is equivalent to
definition 6.1. It may be helpful to review Euler’s formula(s)—see appendix C.4.

Definition 6.2

The Fourier analysis of a periodic function H(C) is, for = ∈N0, period), and angular
frequency $= = 2�=/),

2±= =
1
)

ˆ)/2

−)/2
H(C)4−9$= C3C.

The Fourier synthesis of a periodic function H(C) with analysis components 2=
corresponding to $= is

H(C)=
∞∑

==−∞
2=4

9$= C .

We call the integer = a harmonic and the frequency associated with it,

$= = 2�=/),
the harmonic frequency. There is a special name for the first harmonic (= = 1): the
fundamental frequency. It is called this because all other frequency components
are integer multiples of it.
It is also possible to convert between the two representations above.

Definition 6.3

The complex Fourier analysis of a periodic function H(C) is, for = ∈N0 and 0= and
1= as defined above,

2±= =
1
2
(
0 |= | ∓ 91 |= |

)
The sinusoidal Fourier analysis of a periodic function H(C) is, for = ∈N0 and 2= as
defined above,

0= = 2= + 2−= and
1= = 9 (2= − 2−=) .

Fourier and Orthogonality 117

The harmonic amplitude �= is

�= =

√
02
= + 12

=

= 2
√
2=2−= .

Amagnitude line spectrum is a graph of the harmonic amplitudes as a function of
the harmonic frequencies. The harmonic phase is

�= =− arctan2(1= , 0=) (see appendix C.2.11)

= arctan2(=(2=),<(2=)). (6.1)

The illustration of figure 6.1 shows how sinusoidal components sum to represent
a square wave. A line spectrum is also shown.

time

frequency

spectral amplitude
amplitude

Figure 6.1. A partial sum of Fourier components of a square wave shown through
time and frequency. The spectral amplitude shows the amplitude of the corresponding
Fourier component.

Let us compute the associated spectral components in the following example.

Example 6.1

Compute the first five harmonic amplitudes that represent the line spectrum for
a square wave in the figure above.

118 Chapter 6

Assume a square wave with amplitude 1. Compute 0= :

0= =
2
)

ˆ)/2

−)/2
H(C) cos (2�=C/)) 3C

=− 2
)

ˆ 0

−)/2
cos (2�=C/)) 3C + 2

)

ˆ)/2

0
cos (2�=C/)) 3C

= 0 because cosine is even.

Compute 1= :

1= =
2
)

ˆ)/2

−)/2
H(C) sin (2�=C/)) 3C

=− 2
)

ˆ 0

−)/2
sin (2�=C/)) 3C + 2

)

ˆ)/2

0
sin (2�=C/)) 3C

=
2
=�
(1− cos(=�))

=

{
0 = even

4
=� = odd

.

Therefore,

�= =

√
02
= + 12

=

�0 = 0 (even)

�1 =
4
�

�2 = 0 (even)

�3 =
4

3�

�4 = 0 (even)

�5 =
4

5�
.

Fourier and Orthogonality 119

6.2 Fourier Transform LINK
0J

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!

Let’s consider a periodic function 5 with period) (T). Each period,
the function has a triangular pulse of width � (pulse_width) and height �/2.
period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function 5 in the time domain. Let’s begin by defining 5 .

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to plot 5 .

N = 151 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

Now we plot.

fig, ax = plt.subplots()
ax.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.draw()

https://math.ricopic.one/0j
https://math.ricopic.one/0j

120 Chapter 6

0) = 15 s

time (s)

0

�/2

Figure 6.2. Triangle pulse train with period) and pulse width �.

Consider the following argument. Just as a Fourier series is a frequency domain
representation of a periodic signal, a Fourier transform is a frequency domain
representation of an aperiodic signal (we will rigorously define it in a moment).
The Fourier series components will have an analog, then, in the Fourier transform.
Recall that they can be computed by integrating over a period of the signal. If
we increase that period infinitely, the function is effectively aperiodic. The result
(within a scaling factor) will be the Fourier transform analog of the Fourier series
components.
Let us approach this understanding by actually computing the Fourier series

components for increasing period) using definition 6.1.We’ll use sympy to compute
the Fourier series cosine and sine components 0= and 1= for component = (n) and
period) (T).

x, a_0, a_n, b_n = sp.symbols('x, a_0, a_n, b_n', real=True)
delta, T = sp.symbols('delta, T', positive=True)
n = sp.symbols('n', nonnegative=True)
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2, delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x, -delta/2, delta/2) # otherwise zero

).simplify()
print(sp.Eq(a_n,an), sp.Eq(b_n,bn))

Fourier and Orthogonality 121

Eq(a_n, Piecewise((T*(1 - cos(pi*delta*n/T))/(pi**2*n**2), n > 0),
(delta**2/(2*T), True))) Eq(b_n, 0)↩→

Furthermore, let us compute the harmonic amplitude
(f_harmonic_amplitude):

�= =

√
02
= + 12

= (6.2)

which we have also scaled by a factor)/� in order to plot it with a convenient scale.
C_n = sp.symbols('C_n', positive=True)
cn = sp.sqrt(an**2+bn**2)
print(sp.Eq(C_n, cn))

Eq(C_n, Piecewise((T*Abs(cos(pi*delta*n/T) - 1)/(pi**2*n**2), n > 0),
(delta**2/(2*T), True)))↩→

Now we lambdify the symbolic expression for a numpy function.

cn_f = sp.lambdify((n, T, delta), cn)

Now we can plot. Write a function to plot pulses in the time domain with the
corresponding frequency spectrum.

def plot_pulses_and_spectrum(T, pulse_width, omega_max):
n_max = round(omega_max*T/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/T
fig, ax = plt.subplots(1, 2)
plt.sca(ax[0])
for i in range(0, 3):

tpp = np.linspace(-T/2, 5*T/2,N)
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now, T, pulse_width)
plt.plot(tpp, fpp, 'b-', linewidth=2)

plt.xlim([-T/2, 3*T/2])
plt.xticks([0, T], [0, '$T='+str(T)+'$ s'])
plt.yticks([0, pulse_width/2], ['0', '$\delta/2$'])
plt.xlabel('time (s)')
plt.sca(ax[1])
plt.stem(

omega, cn_f(n_a, T, pulse_width)*T/pulse_width, 'bo-'
)
plt.xlim([0, omega_max])
plt.ylim([0, 1.1])
plt.xlabel('Frequency ω (rad/s)')
plt.ylabel('$C_n T/\delta$')
return fig

122 Chapter 6

Now we plot the pulses and their spectra for) ∈ [5, 15, 25] rad/s and �= 2.

omega_max = 12 # Maximum frequency to plot
fig = plot_pulses_and_spectrum(5, pulse_width, omega_max)
plt.draw()

0) = 5 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.3. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 5 s.

fig = plot_pulses_and_spectrum(15, pulse_width, omega_max)
plt.draw()

0) = 15 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.4. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 15 s.

fig = plot_pulses_and_spectrum(25, pulse_width, omega_max)
plt.draw()

Fourier and Orthogonality 123

0) = 25 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.5. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 25 s.

The line spectra are shown in the right-hand columns of the plots above. Note that
with our chosen scaling, as) increases, the line spectra reveal a distinct waveform.
Let � be the continuous function of angular frequency $

�($)= �
2
· sin2($�/4)
($�/4)2 . (6.3)

First, we plot it.

def F(w):
return pulse_width/2*np.sin(w*pulse_width/4)**2 / \

(w*pulse_width/4)**2
N = 201 # number of points to plot
wpp = np.linspace(0.0001, omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
fig, ax = plt.subplots()
plt.plot(wpp, Fpp, 'b-', linewidth=2) # plot
plt.xlim([0, omega_max])
plt.yticks([0, pulse_width/2],['0','$\delta/2$'])
plt.xlabel('Frequency ω (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

124 Chapter 6

0 2 4 6 8 10 12

Frequency $ (rad/s)

0

�/2

�
($
)

Figure 6.6. Continuous function �($).

The plot of � is clearly emerging from the preceding line spectra as the period)
increases.
Now we are ready to define the Fourier transform and its inverse. We will define

the Fourier transform in two ways: as a trigonometric transform and as a complex
transform. We begin with the trigonometric transform and its inverse.

Definition 6.4: Fourier Transform (Trigonometric)

Fourier transform (analysis):

�($)=
ˆ ∞
−∞

H(C) cos($C)3C (6.4)

�($)=
ˆ ∞
−∞

H(C) sin($C)3C. (6.5)

Inverse Fourier transform (synthesis):

H(C)= 1
2�

ˆ ∞
−∞

�($) cos($C)3$+ 1
2�

ˆ ∞
−∞

�($) sin($C)3$. (6.6)

The Fourier transform is a generalization of the Fourier series to aperiodic func-
tions (i.e., functions with infinite period). The complex form of the Fourier transform
is more convenient for analysis and computation, as we will see.

Fourier and Orthogonality 125

Definition 6.5: Fourier Transform (Complex)

Fourier transform ℱ (analysis):

ℱ (H(C))=.($)=
ˆ ∞
−∞

H(C)4−9$C3C. (6.7)

Inverse Fourier transform ℱ −1 (synthesis):

ℱ −1(.($))= H(C)= 1
2�

ˆ ∞
−∞

.($)4 9$C3$. (6.8)

So now we have defined the Fourier transform. There are many applications,
including solving differential equations and frequency domain

representations—called spectra—of time domain functions.
There is a striking similarity between the Fourier transform and the Laplace

transform, with which you are already acquainted. In fact, the Fourier transform is
a special case of a Laplace transform with Laplace transform variable B = 9$ instead
of having some real component. Both transforms convert differential equations to
algebraic equations, which can be solved and inversely transformed to find time-
domain solutions. The Laplace transform is especially important to use when an
input function to a differential equation is not absolutely integrable and the Fourier
transform is undefined (for example, our definitionwill yield a transform for neither
the unit step nor the unit ramp functions). However, the Laplace transform is also
preferred for initial value problems due to its convenient way of handling them. The
two transforms are equally useful for solving steady state problems. Although the
Laplace transform has many advantages, for spectral considerations, the Fourier
transform is the only game in town.
A table of Fourier transforms and their properties can be found in appendix B.2.

Example 6.2

Consider the aperiodic signal H(C)= DB(C)4−0C with DB the unit step function and
0 > 0. The signal is plotted below. Derive the complex frequency spectrum and
plot its magnitude and phase.

126 Chapter 6

−2 −1 0 1 2 3 4 5
0

0.5

1

C

H
(C
)

Figure 6.7. An aperiodic signal.

The signal is aperiodic, so the Fourier transform can be computed from
equation (6.7):

.($)=
ˆ ∞
−∞

H(C)4 9$C3C

=

ˆ ∞
−∞

DB(C)4−0C 4 9$C3C (def. of H)

=

ˆ ∞
0

4−0C 4 9$C3C (DB effect)

=

ˆ ∞
0

4(−0+9$)C3C (multiply)

=
1

−0 + 9$ 4
(−0+9$)C

����∞
0
3C (antiderivative)

=
1

−0 + 9$
(

lim
C→∞

4(−0+9$)C − 40
)

(evaluate)

=
1

−0 + 9$
(

lim
C→∞

4−0C 4 9$C − 1
)

(arrange)

=
1

−0 + 9$ ((0)(complex with mag≤ 1) − 1) (limit)

=
−1

−0 + 9$ (consequence)

=
1

0 − 9$

=
0 + 9$
0 + 9$ ·

1
0 − 9$ (rationalize)

Fourier and Orthogonality 127

=
0 + 9$
02 +$2

.

The magnitude and phase of this complex function are straightforward to
compute:

|.($)| =
√
<(.($))2 +=(.($))2

=
1

02 +$2

√
02 +$2

=
1

√
02 +$2

∠.($)= arctan($/0).
Now we can plot these functions of $. Setting 0 = 1 (arbitrarily), we obtain the

plots of figure 6.8.

0

0.5

1

|.
($
)|

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

$

∠
.
($
)

Figure 6.8. The magnitude and phase of the Fourier transform.

128 Chapter 6

6.3 Generalized Fourier Series and Orthogonality LINK
UJ

Let 5 :R→C, 6 :R→C, and F :R→C be complex functions. For
square-integrable2 5 , 6, and F, the inner product of 5 and 6 with
weight function F over the interval [0, 1] ⊆R is3

〈 5 , 6〉F =

ˆ 1

0

5 (G)6(G)F(G) dG

where 6 denotes the complex conjugate of 6. The inner product of functions can be
considered analogous to the inner (or dot) product of vectors.
The fourier series components can be found by a special property of the sin and

cos functions called orthogonality. In general, functions 5 and 6 from above are
orthogonal over the interval [0, 1] iff

〈 5 , 6〉F = 0

for weight function F. Similar to how a set of orthogonal vectors can be a basis for
a vector space, a set of orthogonal functions can be a basis for a function space: a
vector space of functions from one set to another (with certain caveats).
In addition to some sets of sinusoids, there are several other important sets of

functions that are orthogonal. For instance, sets of legendre polynomials (Kreyszig
2011; § 5.2) and bessel functions (§ 5.4) are orthogonal.
As with sinusoids, the orthogonality of some sets of functions allows us to com-

pute their series components. Let functions 50 , 51 , · · · be orthogonal with respect
to weight function F on interval [0, 1] and let
0 ,
1 , · · · be real constants. A
generalized fourier series is (§ 11.6)

5 (G)=
∞∑
<=0

< 5<(G)

and represents a function 5 as a convergent series. It can be shown that the Fourier
components
< can be computed from

< =
〈 5 , 5<〉F
〈 5< , 5<〉F

.

In keeping with our previous terminology for fourier series, section 6.3 and
section 6.3 are called general fourier synthesis and analysis, respectively.
For the aforementioned legendre and bessel functions, the generalized fourier

series are called fourier-legendre and fourier-bessel series (§ 11.6). These and

2. A function 5 is square-integrable if
´∞
−∞ | 5 (G)|2 dG <∞.

3. This definition of the inner product can be extended to functions on R2 and R3 domains using double-
and triple-integration. See (Schey 2005; p. 261).

https://math.ricopic.one/uj
https://math.ricopic.one/uj

Fourier and Orthogonality 129

the standard fourier series (section 6.1) are of particular interest for the solution of
partial differential equations (chapter 7).

130 Chapter 6

6.4 Problems LINK
3A

Problem 6.1 LINKSTANISLAW Explain, in your own words (supplementary drawings
are ok), what the frequency domain is, how we derive models in it, and why it is
useful.

Problem 6.2 LINKPUG Consider the function

5 (C)= 8 cos(C) + 6 sin(2C) +
√

5 cos(4C) + 2 sin(4C) + cos(6C −�/2).
(a) Find the (harmonic) magnitude and (harmonic) phase of its Fourier series com-
ponents. (b) Sketch its magnitude and phase spectra. Hint: no Fourier integrals are
necessary to solve this problem.

Problem 6.3 LINKPONYO Consider the function with 0 > 0

5 (C)= 4−0 |C | .
From the transform definition, derive the Fourier transform �($) of 5 (C). Simplify
the result such that it is clear the expression is real (no imaginary component).

Problem 6.4 LINKSEESAW Consider the periodic function 5 :R→R with period)
defined for one period as

5 (C)= 0C for C ∈ (−)/2,)/2] (6.9)

where 0,) ∈R. Perform a fourier series analysis on 5 . Letting 0 = 5 and) = 1, plot
5 along with the partial sum of the fourier series synthesis, the first 50 nonzero
components, over C ∈ [−),)].

https://math.ricopic.one/3a
https://math.ricopic.one/3a
https://math.ricopic.one/stanislaw
https://math.ricopic.one/pug
https://math.ricopic.one/ponyo
https://math.ricopic.one/seesaw

Fourier and Orthogonality 131

−)/2 −)/4 0)/4)/2
−�

−�/2

0

�/2

�

C

H
(C
)

Figure 6.9. one period) of the function H(C). Every line that appears straight is so.

Problem 6.5 LINKTOTORO Consider a periodic function H(C)with some period) ∈R
and some parameter � ∈R for which one period is shown in figure 6.9.
a. Perform a trigonometric Fourier series analysis of H(C) and write the Fourier

series .($).
b. Plot the harmonic amplitude spectrum of .($) for �=) = 1. Consider using

computing software.
c. Plot the phase spectrum of .($) for �=) = 1. Consider using computing

software.

Problem 6.6 LINKMALL Consider the function 5 :R→R defined as

5 (C)=
{
0 − 0 |C |/) for C ∈ [−),)]
0 otherwise

(6.10)

where 0,) ∈R. Perform a fourier transform analysis on 5 , resulting in �($). Plot �
for various 0 and).

Problem 6.7 LINKMIYAZAKI Consider the function 5 :R→R defined as
5 (C)= 04−1 |C−) | (6.11)

where 0, 1,) ∈R. Perform a fourier transform analysis on 5 , resulting in �($). Plot
� for various 0, 1, and).

Problem 6.8 LINKHAKU Consider the function 5 :R→R defined as
5 (C)= 0 cos $0C + 1 sin $0C (6.12)

https://math.ricopic.one/totoro
https://math.ricopic.one/mall
https://math.ricopic.one/miyazaki
https://math.ricopic.one/haku

132 Chapter 6

where 0, 1, $0 ∈R constants. Perform a fourier transform analysis on 5 , resulting in
�($).4

Problem 6.9 LINKSECRETS This exercise encodes a “secret word” into a sampled
waveform for decoding via a discrete fourier transform (DFT). The nominal goal of
the exercise is to decode the secret word. Along the way, plotting and interpreting
the DFT will be important.
First, load relevant packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to convert a letter into an integer
index of the alphabet (a becomes 1, b becomes 2, etc.) and string_to_number_list
to convert a string to a list of ints, as shown in the example at the end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal by beginning with “white
noise,” which is broadband (appears throughout the spectrum) and adding to it sin
functions with amplitudes corresponding to the letter assignments of the code and
harmonic corresponding to the position of the letter in the string. For instance, the
string 'bad' would be represented by noise plus the signal

2 sin 2�C + 1 sin 4�C + 4 sin 6�C. (6.13)

Let’s set this up for secret word 'chupcabra'.

N = 2000
Tm = 30

4. It may be alarming to see a Fourier transform of a periodic function! Strictly speaking, it does not
exist; however, if we extend the transform to include the distribution (not actually a function) Dirac �($),
the modified-transform does exist and is given in table B.2.

4. Python code in this section was generated from a Jupyter notebook named
random_signal_fft.ipynbwith a python3 kernel.

https://math.ricopic.one/secrets

Fourier and Orthogonality 133

T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to know the fundamental frequency of
the generated data.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

Finally, we can save our data to a numpy file secrets.npy to distribute our
message.

np.save('secrets',y)

Now, I have done this (for a different secret word!) and saved the data; download
it here:

LINK
SG

https://math.ricopic.one/sg
In order to load the .npy file into Python, we can use the following

command.

secret_array = np.load('secrets.npy')

Your job is to (a) perform aDFT, (b) plot the spectrum, and (c) decode themessage!
Here are a few hints.

1. Use from scipy import fft to do the DFT.
2. Use a hanning window to minimize the end-effects. See numpy.hanning for

instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).

https://math.ricopic.one/sg
https://math.ricopic.one/sg
https://math.ricopic.one/sg

134 Chapter 6

0 1 2 3 4 5 6 7

time (s)

−60

−40

−20

0

20

40

60

y n

Figure 6.10. the chupacabra signal.

3. Use only the positive spectrum; you can lop off the negative side and double
the positive side.

Problem 6.10 LINKSOCIETY Derive a fourier transform property for expressions
including function 5 :R→R for

5 (C) cos($0C +#)
where $0 ,# ∈R.

Problem 6.11 LINKFLAPPER Consider the function 5 :R→R defined as
5 (C)= 0DB(C)4−1C cos($0C +#) (6.14)

where 0, 1, $0 ,# ∈R and DB(C) is the unit step function. Perform a fourier transform
analysis on 5 , resulting in �($). Plot � for various 0, 1, $0, # and).

Problem 6.12 LINKEASTEGG Consider the function 5 :R→R defined as
5 (C)= 6(C) cos($0C) (6.15)

https://math.ricopic.one/society
https://math.ricopic.one/flapper
https://math.ricopic.one/eastegg

Fourier and Orthogonality 135

where $0 ∈R and 6 :R→Rwill be defined in each part below. Perform a fourier
transform analysis on 5 for each 6 below for $1 ∈R a constant and consider how
things change if $1→$0.
a. 6(C)= cos($1C)
b. 6(C)= sin($1C)

Problem 6.13 LINKSAVAGE An instrument called a “lock-in amplifier” can measure
a sinusoidal signal � cos($0C +#)= 0 cos($0C) + 1 sin($0C) at a known frequency
$0 with exceptional accuracy even in the presence of significant noise #(C). The
workings of these devices can be described in two operations: first, the following
operations on the signal with its noise, 51(C)= 0 cos($0C) + 1 sin($0C) +#(C),

52(C)= 51(C) cos($1C) and 53(C)= 51(C) sin($1C). (6.16)

where $0 , $1 , 0, 1 ∈R. Note the relation of this operation to the Fourier transform
analysis of problem 6.12. The key is to know with some accuracty $0 such that the
instrument can set $1 ≈$0. The second operation on the signal is an aggressive low-
pass filter. The filtered 52 and 53 are called the in-phase and quadrature components
of the signal and are typically given a complex representation

(in-phase) + 9 (quadrature).
Explain with fourier transform analyses on 52 and 53
a. what �2 =ℱ (52) looks like,
b. what �3 =ℱ (53) looks like,
c. why we want $1 ≈$0,
d. why a low-pass filter is desirable, and
e. what the time-domain signal will look like.

Problem 6.14 LINKSTRAWMAN Consider again the lock-in amplifier explored in prob-
lem 6.13. Investigate the lock-in amplifier numerically with the following steps.
a. Generate a noisy sinusoidal signal at some frequency $0. Include enough

broadband white noise that the signal is invisible in a time-domain plot.
b. Generate 52 and 53, as described in problem 6.13.
c. Apply a time-domain discrete low-pass filter to each 52 ↦→)2 and 53 ↦→

)3, such as scipy’s scipy.signal.sosfiltfilt, to complete the lock-in
amplifier operation. Plot the results in time and as a complex (polar) plot.

d. Perform a discrete fourier transform on each 52 ↦→ �2 and 53 ↦→ �3. Plot the
spectra.

e. Construct a frequency domain low-pass filter � and apply it (multiply!) to
each �2 ↦→ �′2 and �3 ↦→ �′3. Plot the filtered spectra.

f. Perform an inverse discrete fourier transform to each �′2 ↦→ 5 ′2 and �
′
3 ↦→ 5 ′3 .

Plot the results in time and as a complex (polar) plot.

https://math.ricopic.one/savage
https://math.ricopic.one/strawman
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt

136 Chapter 6

g. Compare the two methods used, i.e. time-domain filtering versus frequency-
domain filtering.

7 Partial Differential Equations LINK
UA

An ordinary differential equation is one with (ordinary) derivatives of functions
of a single variable each—time, in many applications. These typically describe
quantities in some sort of lumped-parameter way: mass as a “point particle,” a
spring’s force as a function of time-varying displacement across it, a resistor’s
current as a function of time-varying voltage across it. Given the simplicity of
such models in comparison to the wildness of nature, it is quite surprising how
well they work for a great many phenomena. For instance, electronics, rigid body
mechanics, population dynamics, bulk fluid mechanics, and bulk heat transfer can
be lumped-parameter modeled.
However, as we saw in (vecs), there are many phenomena of which we require

more detailed models. These include:

• detailed fluid mechanics,
• detailed heat transfer,
• solid mechanics,
• electromagnetism, and
• quantum mechanics.

In many cases, what is required to account for is the time-varying spatial dis-

tribution of a quantity. In fluid mechanics, we treat a fluid as having quantities
such as density and velocity that vary continuously over space and time. Deriving
the governing equations for such phenomena typically involves vector calculus;
we observed in (vecs) that statements about quantities like the divergence (e.g.,
continuity) can be made about certain scalar and vector fields. Such statements are
governing equations (e.g., the continuity equation) and they are partial differential
equations (PDEs) because the quantities of interest, called dependent variables

(e.g., density and velocity), are both temporally and spatially varying (temporal
and spatial variables are therefore called independent variables).
In this chapter, we explore the analytic solution of PDEs. This is related to but

distinct from the numeric solution (i.e., simulation) of PDEs, which is another

https://math.ricopic.one/ua
https://math.ricopic.one/ua

138 Chapter 7

important topic. Many PDEs have no known analytic solution, so for these numeric
solution is the best available option.1 However, it is important to note that the
insight one can gain from an analytic solution is often much greater than that from
a numeric solution. This is easily understood when one considers that a numeric
solution is an approximation for a specific set of initial and boundary conditions.
Typically, very little can be said of what would happen in general, although this is
often what we seek to know. So, despite the importance of numeric solution, one
should always prefer an analytic solution.
Three good texts on PDEs for further study are (Kreyszig 2011; Ch. 12), (Strauss

2007), and (Haberman 2018).

7.1 Classifying PDEs LINK
VV

PDEs often have an infinite number of solutions; however, when
applying them to physical systems, we usually assume that a deter-
ministic, or at least a probabilistic, sequence of events will occur. Therefore, we
impose additonal constraints on a PDE, usually in the form of

1. initial conditions, values of independent variables over all space at an initial
time and

2. boundary conditions, values of independent variables (or their derivatives)
over all time.

Ideally, imposing such conditions leaves us with awell-posed problem, which
has three aspects. (Bove, Colombini, and Santo 2006; § 1.5)

existence There exists at least one solution.
uniqueness There exists at most one solution.
stability If the PDE, boundary conditons, or initial conditions are changed slightly,

the solution changes only slightly.

As with ODEs, PDEs can be linear or nonlinear; that is, the dependent variables
and their derivatives can appear in only linear combinations (linear PDE) or in one
or more nonlinear combination (nonlinear PDE). As with ODEs, there are more
known analytic solutions to linear PDEs than nonlinear PDEs.
The order of a PDE is the order of its highest partial derivative. A great many

physical models can be described by second-order PDEs or systems thereof. Let D
be an independent scalar variable, a function of < temporal and spatial variables
G8 ∈R= . A second-order linear PDE has the form, for coefficients
, �, �, 0=3�, and

1. There are some analytic techniques for gaining insight into PDEs for which there are no known
solutions, such as considering the phase space. This is an active area of research; for more, see (Bove,
Colombini, and Santo 2006).

https://math.ricopic.one/vv
https://math.ricopic.one/vv

Partial Differential Equations 139

real functions of G8 , (Strauss 2007; § 1.6)
=∑
8=1

=∑
9=1

8 9%
2
G8G 9

D︸ ︷︷ ︸
second-order terms

+
<∑
:=1

(
�:%G:D + �:D

)
︸ ︷︷ ︸

first- and zeroth-order terms

= 5 (G1 , · · · , G=)︸ ︷︷ ︸
forcing

where 5 is called a forcing function. When 5 is zero, section 7.1 is called homoge-

neous. We can consider the coefficients
8 9 to be components of a matrix � with
rows indexed by 8 and columns indexed by 9. There are four prominent classes
defined by the eigenvalues of �:

elliptic the eigenvalues all have the same sign,
parabolic the eigenvalues have the same sign except one that is zero,
hyperbolic exactly one eigenvalue has the opposite sign of the others, and
ultrahyperbolic at least two eigenvalues of each signs.

The first three of these have received extensive treatment. They are named
after conic sections due to the similarity the equations have with polynomials
when derivatives are considered analogous to powers of polynomial variables. For
instance, here is a case of each of the first three classes,

%2
GGD + %2

HHD = 0 (elliptic)

%2
GGD − %2

HHD = 0 (hyperbolic)

%2
GGD − %CD = 0. (parabolic)

When � depends on G8 , it may have multiple classes across its domain. In general,
this equation and its associated initial and boundary conditions do not comprise
a well-posed problem; however several special cases have been shown to be well-
posed. Thus far, the most general statement of existence and uniqueness is the
cauchy-kowalevski theorem for cauchy problems.

140 Chapter 7

7.2 Sturm-Liouville Problems LINK
2H

Before we introduce an important solution method for PDEs in
section 7.3, we consider an ordinary differential equation that will
arise in that method when dealing with a single spatial dimension G: the sturm-

liouville (S-L) differential equation. Let ?, @, � be functions of G on open interval
(0, 1). Let - be the dependent variable and � constant. The regular S-L problem is
the S-L ODE2

d
dG
(?-′) + @- +��- = 0 (7.1)

with boundary conditions

�1-(0) + �2-
′(0)= 0 (7.2)

�3-(1) + �4-
′(1)= 0 (7.3)

with coefficients �8 ∈R. This is a type of boundary value problem.
This problem has nontrivial solutions, called eigenfunctions -=(G) with = ∈Z+,

corresponding to specific values of �=�= called eigenvalues.3 There are several
important theorems proven about this (see (Haberman 2018; § 5.3)). Of greatest
interest to us are that

1. there exist an infinite number of eigenfunctions -= (unique within a multi-
plicative constant),

2. there exists a unique corresponding real eigenvalue �= for each eigenfunction
-= ,

3. the eigenvalues can be ordered as �1 <�2 < · · · ,
4. eigenfunction -= has = − 1 zeros on open interval (0, 1),
5. the eigenfunctions -= form an orthogonal basis with respect to weighting

function � such that any piecewise continuous function 5 : [0, 1]→R can be
represented by a generalized fourier series on [0, 1].

This last theorem will be of particular interest in section 7.3.

2. For the S-L problem to be regular, it has the additional constraints that ?, @, � are continuous and
?, � > 0 on [0, 1]. This is also sometimes called the sturm-liouville eigenvalue problem. See (Haberman
2018; § 5.3) for the more general (non-regular) S-L problem and (§ 7.4) for the multi-dimensional analog.

3. These eigenvalues are closely related to, but distinct from, the “eigenvalues” that arise in systems of
linear ODEs.

https://math.ricopic.one/2h
https://math.ricopic.one/2h

Partial Differential Equations 141

7.2.1 Types of Boundary Conditions

Boundary conditions of the sturm-liouville kind equation (7.2) have four sub-types:

dirichlet for just �2 , �4 = 0,
neumann for just �1 , �3 = 0,
robin for all �8 ≠ 0, and
mixed if �1 = 0, �3 ≠ 0; if �2 = 0, �4 ≠ 0.
There are many problems that are not regular sturm-liouville problems. For

instance, the right-hand sides of equation (7.2) are zero, making them homogeneous

boundary conditions; however, these can also be nonzero. Another case is periodic
boundary conditions:

-(0)=-(1) (7.4)

-′(0)=-′(1). (7.5)

Example 7.1

Consider the differential equation

-′′+�- = 0

with dirichlet boundary conditions on the boundary of the interval [0, !]
-(0)= 0 and -(!)= 0.

Solve for the eigenvalues and eigenfunctions.

This is a sturm-liouville problem, so we know the eigenvalues are real. The
well-known general solutions to the ODE is

-(G)=
{
:1 + :2G �= 0

:14
9
√
�G + :24

−9
√
�G otherwise

with real constants :1 , :2. The solution must also satisfy the boundary conditions.
Let’s apply them to the case of �= 0 first:

-(0)= 0⇒ :1 + :2(0)= 0⇒ :1 = 0

-(!)= 0⇒ :1 + :2(!)= 0⇒ :2 =−:1/!.
Together, these imply :1 = :2 = 0, which gives the trivial solution-(G)= 0, inwhich
we aren’t interested. We say, then, for nontrivial solutions �≠ 0. Now let’s check
� < 0. The solution becomes

-(G)= :14
−
√
|�|G + :24

√
|�|G

= :3 cosh(
√
|�|G) + :4 sinh(

√
|�|G)

142 Chapter 7

where :3 and :4 are real constants. Again applying the boundary conditions:

-(0)= 0⇒ :3 cosh(0) + :4 sinh(0)= 0⇒ :3 + 0= 0⇒ :3 = 0

-(!)= 0⇒ 0 cosh(
√
|�|!) + :4 sinh(

√
|�|!)= 0⇒ :4 sinh(

√
|�|!)= 0.

However, sinh(
√
|�|!)≠ 0 for !> 0, so :4 = :3 = 0—again, the trivial solution. Now

let’s try � > 0. The solution can be written

-(G)= :5 cos(
√
�G) + :6 sin(

√
�G).

Applying the boundary conditions for this case:

-(0)= 0⇒ :5 cos(0) + :6 sin(0)= 0⇒ :5 + 0= 0⇒ :5 = 0

-(!)= 0⇒ 0 cos(
√
�!) + :6 sin(

√
�!)= 0⇒ :6 sin(

√
�!)= 0.

Now, sin(
√
�!)= 0 for

√
�!= =�⇒

�=

(=�
!

)2
. (= ∈Z+)

Therefore, the only nontrivial solutions that satisfy both the ODE and the
boundary conditions are the eigenfunctions

-=(G)= sin
(√

�=G
)

(7.6)

= sin
(=�
!
G
)

(7.7)

with corresponding eigenvalues

�= =
(=�
!

)2
.

Note that because � > 0, �1 is the lowest eigenvalue.

Plotting the Eigenfunctions

import numpy as np
import matplotlib.pyplot as plt

Set != 1 and compute values for the first four eigenvalues lambda_n and
eigenfunctions X_n.

Partial Differential Equations 143

L = 1
x = np.linspace(0, L, 100)
n = np.linspace(1, 4, 4, dtype=int)
lambda_n = (n*np.pi/L)**2
X_n = np.zeros([len(n), len(x)])
for i,n_i in enumerate(n):

X_n[i, :] = np.sin(np.sqrt(lambda_n[i])*x)

Plot the eigenfunctions.

fig, ax = plt.subplots()
for i, n_i in enumerate(n):

ax.plot(x, X_n[i,:], linewidth=2,label='$n = '+str(n_i)+'$')
plt.legend()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

= = 1

= = 2

= = 3

= = 4

Figure 7.1. Eigenfunctions -=(G).

We see that the fourth of the S-L theorems appears true: = − 1 zeros of -= exist
on the open interval (0, 1).

144 Chapter 7

7.3 PDE Solution by Separation of Variables LINK
AN

We are now ready to learn one of the most important techniques for
solving PDEs: separation of variables. It applies only to linear PDEs
since it will require the principle of superposition. Not all linear PDEs yield to this
solution technique, but several that are important do.
The technique includes the following steps.

assume a product solution Assume the solution can be written as a product

solution D? : the product of functions of each independent variable.
separate PDE Substitute D? into the PDE and rearrange such that at least one side of

the equation has functions of a single independent variabe. If this is possible,
the PDE is called separable.

set equal to a constant Each side of the equation depends on different independent
variables; therefore, they must each equal the same constant, often called −�.

repeat separation, as needed If there are more than two independent variables,
there will be an ODE in the separated variable and a PDE (with one fewer
variables) in the other independent variables. Attempt to separate the PDE
until only ODEs remain.

solve each boundary value problem Solve each boundary value problem ODE,
ignoring the initial conditions for now.

solve the time variable ODE Solve for the general solution of the time variable
ODE, sans initial conditions.

construct the product solution Multiply the solution in each variable to construct
the product solution D? . If the boundary value problems were sturm-liouville,
the product solution is a family of eigenfunctions from which any function
can be constructed via a generalized fourier series.

apply the initial condition The product solutions individually usually do notmeet
the initial condition. However, a generalized fourier series of them nearly
always does. Superposition tells us a linear combination of solutions to the
PDE and boundary conditions is also a solution; the unique series that also
satisfies the initial condition is the unique solution to the entire problem.

Example 7.2

Consider the one-dimensional diffusion equation PDEa

%CD(C , G)= :%2
GGD(C , G)

with real constant :, with dirichlet boundary conditions on inverval G ∈ [0, !]
D(C , 0)= 0 (7.8)

D(C , !)= 0, (7.9)

https://math.ricopic.one/an
https://math.ricopic.one/an

Partial Differential Equations 145

and with initial condition
D(0, G)= 5 (G),

where 5 is some piecewise continuous function on [0, !].

a. For more on the diffusion or heat equation, see (Haberman 2018; § 2.3), (Kreyszig 2011; § 12.5), and
(Strauss 2007; § 2.3).

Assume a Product Solution First, we assume a product solution of the form
D?(C , G)=)(C)-(G) where) and - are unknown functions on C > 0 and G ∈ [0, !].

Separate PDE Second, we substitute the product solution into section 7.3 and
separate variables:

)′- = :)-′′⇒
)′

:)
=
-′′

-
.

So it is separable! Note that we chose to group : with), which was arbitrary but
conventional.

Set Equal to a Constant Since these two sides depend on different independent
variables (C and G), they must equal the same constant we call −�, so we have
two ODEs:

)′

:)
=−� ⇒)′+�:) = 0

-′′

-
=−� ⇒-′′+�- = 0.

Solve the Boundary Value Problem The latter of these equations with
the boundary conditions equation (7.8) is precisely the same sturm-liouville
boundary value problem from (ex:sturm_liouville1), which had eigenfunctions

-=(G)= sin
(√

�=G
)

(7.10)

= sin
(=�
!
G
)

(7.11)

with corresponding (positive) eigenvalues

�= =
(=�
!

)2
.

Solve the Time Variable ODE The time variable ODE is homogeneous and
has the familiar general solution

)(C)= 24−:�C

146 Chapter 7

with real constant 2. However, the boundary value problem restricted values of
� to �= , so

)=(C)= 24−:(=�/!)
2C .

Construct the Product Solution The product solution is

D?(C , G)=)=(C)-=(G)

= 24−:(=�/!)
2C sin

(=�
!
G
)
.

This is a family of solutions that each satisfy only exotically specific initial
conditions.

Apply the Initial Condition The initial condition is D(0, G)= 5 (G). The eigen-
functions of the boundary value problem form a fourier series that satisfies the
initial condition on the interval [0, !] if we extend 5 to be periodic and odd over
G (Kreyszig 2011; p. 550); we call the extension 5 ∗. The odd series synthesis can
be written

5 ∗(G)=
∞∑
==1

1= sin
(=�
!
G
)

where the fourier analysis gives

1= =
2
!

ˆ !

0
5 ∗(") sin

(=�
!

"
)
.

So the complete solution is

D(C , G)=
∞∑
==1

1=4
−:(=�/!)2C sin

(=�
!
G
)
.

Notice this satisfies the PDE, the boundary conditions, and the initial condition!

Plotting Solutions If wewant to plot solutions, we need to specify an initial con-
dition D(0, G)= 5 ∗(G) over [0, !]. We can choose anything piecewise continuous,
but for simplicity let’s let

5 (G)= 1. (G ∈ [0, !])
The odd periodic extension is an odd square wave. The integral section 7.3 gives

1= =
4
=�
(1− cos(=�))

=

{
0 = even

4
=� = odd.

Partial Differential Equations 147

Now we can write the solution as

D(C , G)=
∞∑

==1, = odd

4
=�

4−:(=�/!)
2C sin

(=�
!
G
)
.

Plotting in Python First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt

Set : = != 1 and sum values for the first N terms of the solution.
L = 1
k = 1
N = 100
x = np.linspace(0,L,300)
t = np.linspace(0,2*(L/np.pi)**2,100)
u_n = np.zeros([len(t),len(x)])
for n in range(N):

n = n+1 # because index starts at 0
if n % 2 == 0: # even

pass # already initialized to zeros
else: # odd

u_n += 4/(n*np.pi)*np.outer(
np.exp(-k*(n*np.pi/L)**2*t),
np.sin(n*np.pi/L*x)

)

Let’s first plot the initial condition.

fig, ax = plt.subplots()
ax.plot(x,u_n[0,:])
plt.xlabel('space x')
plt.ylabel('$u(0,x)$')
plt.draw()

148 Chapter 7

0.0 0.2 0.4 0.6 0.8 1.0
space G

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
(0
,G
)

Figure 7.2. Initial condition D(0, G)

Now we plot the entire response.

fig, ax = plt.subplots()
plt.contourf(t,x,u_n.T)
c = plt.colorbar()
c.set_label('$u(t,x)$')
plt.xlabel('time t')
plt.ylabel('space x')
plt.show()

Partial Differential Equations 149

0.00 0.05 0.10 0.15 0.20
time t

0.0

0.2

0.4

0.6

0.8

1.0

sp
ac

e x

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

u
(t
,x

)

Figure 7.3. Solution D(C , G)

We see the diffusive action proceeds as we expected.

7.4 The 1DWave Equation LINK
2I

The one-dimensional wave equation is the linear PDE

%2
CCD(C , G)= 22%2

GGD(C , G).
with real constant 2. This equationmodels such phenomena as strings, fluids, sound,
and light. It is subject to initial and boundary conditions and can be extended to
multiple spatial dimensions. For 2D and 3D examples in rectangular and polar
coordinates, see (Kreyszig 2011; § 12.9 12.10) and (Haberman 2018; § 4.5 7.3).

Example 7.3

Consider the one-dimensional wave equation PDE

%2
CCD(C , G)= 22%2

GGD(C , G) (7.12)

with real constant 2 and with dirichlet boundary conditions on inverval G ∈ [0, !]
D(C , 0)= 0 and D(C , !) = 0, (7.13)

and with initial conditions (we need two because of the second time-derivative)

D(0, G)= 5 (G) and %CD(0, G)= 6(G),
where 5 and 6 are some piecewise continuous functions on [0, !].

https://math.ricopic.one/2i
https://math.ricopic.one/2i

150 Chapter 7

Assume a Product Solution First, we assume a product solution of the form
D?(C , G)=)(C)-(G) where) and - are unknown functions on C > 0 and G ∈ [0, !].

Separate PDE Second, we substitute the product solution into equation (7.12)
and separate variables:

)′′- = 22)-′′⇒
)′′

22)
=
-′′

-
.

So it is separable! Note that we chose to group 2 with), which was arbitrary but
conventional.

Set Equal to a Constant Since these two sides depend on different independent
variables (C and G), they must equal the same constant we call −�, so we have
two ODEs:

)′′

22)
=−� ⇒)′′+�22) = 0

-′′

-
=−� ⇒-′′+�- = 0.

Solve the Boundary Value Problem The latter of these equations with the
boundary conditions ?? is precisely the same sturm-liouville boundary value
problem from ??, which had eigenfunctions

-=(G)= sin
(√

�=G
)

(7.14)

= sin
(=�
!
G
)

(7.15)

with corresponding (positive) eigenvalues

�= =
(=�
!

)2
.

Solve the Time Variable ODE The time variable ODE is homogeneous and,
with � restricted by the reals by the boundary value problem, has the familiar
general solution

)(C)= :1 cos(2
√
�C) + :2 sin(2

√
�C)

with real constants :1 and :2. However, the boundary value problem restricted
values of � to �= , so

)=(C)= :1 cos
(2=�
!
C
)
+ :2 sin

(2=�
!
C
)
.

Partial Differential Equations 151

Construct the Product Solution The product solution is

D?(C , G)=)=(C)-=(G)

= :1 sin
(=�
!
G
)

cos
(2=�
!
C
)
+ :2 sin

(=�
!
G
)

sin
(2=�
!
C
)
.

This is a family of solutions that each satisfy only exotically specific initial
conditions.

Apply the Initial Conditions Recall that superposition tells us that any linear
combination of the product solution is also a solution. Therefore,

D(C , G)=
∞∑
==1

0= sin
(=�
!
G
)

cos
(2=�
!
C
)
+ 1= sin

(=�
!
G
)

sin
(2=�
!
C
)

is a solution. If 0= and 1= are properly selected to satisfy the initial conditions,
section 7.4 will be the solution to the entire problem. Substituting C = 0 into our
potential solution gives

D(0, G)=
∞∑
==1

0= sin
(=�
!
G
)

(7.16)

%CD(C , G)|C=0 =

∞∑
==1

1=
2=�
!

sin
(=�
!
G
)
. (7.17)

Let us extend 5 and 6 to be periodic and odd over G; we call the extensions 5 ∗

and 6∗. From equation (7.16), the intial conditions are satsified if

5 ∗(G)=
∞∑
==1

0= sin
(=�
!
G
)

(7.18)

6∗(G)=
∞∑
==1

1=
2=�
!

sin
(=�
!
G
)
. (7.19)

We identify these as two odd fourier syntheses. The corresponding fourier
analyses are

0= =
2
!

ˆ !

0
5 ∗(") sin

(=�
!

"
)

(7.20)

1=
2=�
!

=
2
!

ˆ !

0
6∗(") sin

(=�
!

"
)

(7.21)

So the complete solution is equations (7.18) and (7.19) with components given by
equations (7.20) and (7.21). Notice this satisfies the PDE, the boundary conditions,
and the initial condition!

152 Chapter 7

Discussion It can be shown that this series solution is equivalent to two traveling
waves that are interfering (see (Haberman 2018; § 4.4) and (Kreyszig 2011; § 12.2)).
This is convenient because computing the series solution exactly requires an
infinite summation. We show in the following section that the approximation by
partial summation is still quite good.

Choosing Specific Initial Conditions If we want to plot solutions, we need to
specify initial conditions over [0, !]. Let’s model a string being suddenly struck
from rest as

5 (G)= 0

6(G)= �(G −Δ!)
where � is the dirac delta distribution and Δ ∈ [0, !] is a fraction of ! representing
the location of the string being struck. The odd periodic extension is an odd pulse
train. The integrals of equations (7.20) and (7.21) give

0= = 0 (7.22)

1= =
2
2=�

ˆ !

0
�("−Δ!) sin

(=�
!

"
)

dG

=
2
2=�

sin(=�Δ). (sifting property)

Now we can write the solution as

D(C , G)=
∞∑
==1

2
2=�

sin(=�Δ) sin
(=�
!
G
)

sin
(2=�
!
C
)
.

Plotting in Python First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt

Set 2 = != 1 and sum values for the first N terms of the solution for some
striking location Δ.

Partial Differential Equations 153

Delta = 0.1 # 0 <= Delta <= L
L = 1
c = 1
N = 150
t = np.linspace(0,30*(L/np.pi)**2,100)
x = np.linspace(0,L,150)
t_b, x_b = np.meshgrid(t,x)
u_n = np.zeros([len(x),len(t)])
for n in range(N):

n = n+1 # because index starts at 0
u_n += 4/(c*n*np.pi)* \

np.sin(n*np.pi*Delta)* \
np.sin(c*n*np.pi/L*t_b)* \
np.sin(n*np.pi/L*x_b)

Let’s first plot some early snapshots of the response.

import seaborn as sns
n_snaps = 7
sns.set_palette(

sns.diverging_palette(
240, 10, n=n_snaps, center="dark"

)
)
fig, ax = plt.subplots()
it = np.linspace(2,77,n_snaps,dtype=int)
for i in range(len(it)):

ax.plot(x,u_n[:,it[i]],label=f"t = {t[i]:.3f}");
lgd = ax.legend(

bbox_to_anchor=(1.05, 1),
loc='upper left'

)
plt.xlabel('space x')
plt.ylabel('$u(t,x)$')
plt.draw()

154 Chapter 7

0.0 0.2 0.4 0.6 0.8 1.0
space G

−1.0

−0.5

0.0

0.5

1.0
D
(C
,G
)

t = 0.000

t = 0.031

t = 0.061

t = 0.092

t = 0.123

t = 0.154

t = 0.184

Figure 7.4. Early snapshots of D(C , G).

Now we plot the entire response.

fig, ax = plt.subplots()
p = ax.contourf(t,x,u_n)
c = fig.colorbar(p,ax=ax)
c.set_label('$u(t,x)$')
plt.xlabel('time t')
plt.ylabel('space x')
plt.show()

Partial Differential Equations 155

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time t

0.0

0.2

0.4

0.6

0.8

1.0

sp
ac

e x

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

u
(t
,x

)

Figure 7.5. Solution D(C , G).

We see a wave develop and travel, reflecting and inverting off each boundary.

156 Chapter 7

7.5 Problems LINK
B2

Problem 7.1 LINKHORTICULTURE The PDE of example 7.2 can be used to describe
the conduction of heat along a long, thin rod, insulated along its length, where
D(C , G) represents temperature. The initial and dirichlet boundary conditions in that
example would be interpreted as an initial temperature distribution along the bar
and fixed temperatures of the ends. Now consider the same PDE

%CD(C , G)= :%2
GGD(C , G) (7.23)

with real constant :, with mixed boundary conditions on interval G ∈ [0, !]
D(C , 0)= 0 (7.24a)

%GD(C , G)|G=! = 0, (7.24b)

and with initial condition

D(0, G)= 5 (G), (7.25)

where 5 is some piecewise continuous function on [0, !]. This represents the
insulation of one end (!) of the rod and the other end (0) is held at a fixed
temperature.
a. Assume a product solution, separate variables into -(G) and)(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= .
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial condition 5 (G) by construct-

ing it from a generalized fourier series of the product solution.
e. Let != : = 1 and

5 (G)=
{

0 for G ∈ [0, !/2)
100 for G ∈ [!/2, !]

(7.26)

as shown in figure 7.6. Compute the solution series components. Plot the
sum of the first 50 terms over G and C.

https://math.ricopic.one/b2
https://math.ricopic.one/b2
https://math.ricopic.one/horticulture

Partial Differential Equations 157

0 0.2 0.4 0.6 0.8 1
0

50

100

G

5(
G
)

Figure 7.6. Initial condition for problem 7.1.

Problem 7.2 LINKPOLTERGEIST The PDE of example 7.2 can be used to describe the
conduction of heat along a long, thin rod, insulated along its length, where D(C , G)
represents temperature. The initial and dirichlet boundary conditions in that exam-
ple would be interpreted as an initial temperature distribution along the bar and
fixed temperatures of the ends. Now consider the same PDE

%CD(C , G)= :%2
GGD(C , G) (7.27)

with real constant :, now with neumann boundary conditions on interval G ∈ [0, !]
%GD |G=0 = 0 and %GD |G=! = 0, (7.28a)

and with initial condition

D(0, G)= 5 (G), (7.29)

where 5 is some piecewise continuous function on [0, !]. This represents the com-
plete insulation of the ends of the rod, such that no heat flows from the ends (or
from anywhere else).
a. Assume a product solution, separate variables into -(G) and)(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= .
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial condition 5 (G) by construct-

ing it from a generalized fourier series of the product solution.
e. Let != : = 1 and 5 (G)= 100− 200/! |G − !/2| as shown in figure 7.7. Compute

the solution series components. Plot the sum of the first 50 terms over G and
C.

https://math.ricopic.one/poltergeist

158 Chapter 7

0 0.2 0.4 0.6 0.8 1
0

50

100

G

5(
G
)

Figure 7.7. Initial condition for problem 7.2.

Problem 7.3 LINKKATHMANDU Consider the free vibration of a uniform and relatively
thin beam—with modulus of elasticity �, second moment of cross-sectional area �,
and mass-per-length �—pinned at each end. The PDE describing this is a version
of the euler-bernoulli beam equation for vertical motion D:

%2
CCD(C , G)=−
2%4

GGGGD(C , G) (7.30)

with real constant
 defined as

2 =
��

�
. (7.31)

Pinned supports fix vertical motion such that we have boundary conditions on
interval G ∈ [0, !]

D(C , 0)= 0 and D(C , !)= 0. (7.32a)

Additionally, pinned supports cannot provide a moment, so

%2
GGD |G=0 = 0 and %2

GGD |G=! = 0. (7.32b)

Furthermore, consider the initial conditions

D(0, G)= 5 (G), and %CD |C=0 = 0. (7.33a)

where 5 is some piecewise continuous function on [0, !].
a. Assume a product solution, separate variables into -(G) and)(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= . Assume real � > 0 (it’s true but tedious to show).
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial conditions by constructing

it from a generalized fourier series of the product solution.
e. Let !=
= 1 and 5 (G)= sin(10�G/!) as shown in figure 7.8. Compute the

solution series components. Plot the sum of the first 50 terms over G and C.

https://math.ricopic.one/kathmandu

Partial Differential Equations 159

0 0.2 0.4 0.6 0.8 1
−1

0

1

G

5(
G
)

Figure 7.8. Initial condition for problem 7.3.

Problem 7.4 LINKHURRIED Given the 1D heat equation,

%

%C
D(C , G)=

%2

%G2
D(C , G),

with boundary conditions,

%

%G
D(C , G)

��
G=!

= 0

D(C , 0)= 0,

and initial condition,

D(0, G)=
{

1 !
3 ≤ G ≤ 2!

3

0 otherwise

a. show that this PDE is separable,
b. solve the sturm-liouville boundary condition problem,
c. find the fourier coefficients, and
d. given != 1,
= 1, and using the first 100 terms of the infinite sum, plot the

solution at C = 0, C = 0.01, and C = 0.1.

Problem 7.5 LINKPLUCK Consider the one-dimensional wave equation PDE

%2
CCD(C , G)= 22%2

GGD(C , G) (7.34)

with real constant 2 and with dirichlet boundary conditions on inverval G ∈ [0, !]
D(C , 0)= 0 and D(C , !)= 0, (7.35a)

and with initial conditions (we need two because of the second time-derivative)

D(0, G)= 5 (G) and %CD(0, G)= 6(G), (7.36)

where 5 and 6 are some piecewise continuous functions on [0, !].

https://math.ricopic.one/hurried
https://math.ricopic.one/pluck

160 Chapter 7

Assumewe canmodel amusical instrument’s plucked stringwith equations (7.34)
to (7.36) with the initial velocity 6(G)= 0 and initial displacement 5 (G) given in
figure 7.9.

0 � !

0

�

G

5(
G
)

Figure 7.9. Initial condition for problem 7.5.

a. Assume a product solution, separate variables into -(G) and)(C), and set
the separation constant to −�.

b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues
�= .

c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial conditions by constructing

it from a generalized fourier series of the product solution.
e. Let � = 0.5, != 2 = 1, and � = 0.3. Compute the solution series components.

Plot the sum of the first 50 terms over G and C.

8 Optimization LINK
EW

This chapter concerns optimization mathematics.

8.1 Gradient Descent LINK
Y7

Consider a multivariate function 5 :R=→R that represents some cost
or value. This is called an objective function, and we often want to
find an ^ ∈R= that yields 5 ’s extremum: minimum or maximum, depending on
whichever is desirable.
It is important to note however that some functions have no finite extremum.

Other functions have multiple. Finding a global extremum is generally difficult;
however, many good methods exist for finding a local extremum: an extremum for
some region ' ⊂R= .
Themethod explored here is called gradient descent. It will soon become apparent

why it has this name.

8.1.1 Stationary Points

Recall from basic calculus that a function 5 of a single variable had potential
local extrema where d 5 (G)/dG = 0. The multivariate version of this, for multivariate
function 5 , is

grad 5 = 0.
A value ^ for which section 8.1.1 holds is called a stationary point. However, as in
the univariate case, a stationary point may not be a local extremum; in these cases,
it called a saddle point.
Consider the hessian matrix � with values, for independent variables G8 ,

�8 9 = %2
G8G 9

5 .

For a stationary point ^ , the second partial derivative test tells us if it is a local
maximum, local minimum, or saddle point:

https://math.ricopic.one/ew
https://math.ricopic.one/ew
https://math.ricopic.one/y7
https://math.ricopic.one/y7

162 Chapter 8

minimum If �(^) is positive definite (all its eigenvalues are positive),
^ is a local minimum.

maximum If �(^) is negative definite (all its eigenvalues are negative),
^ is a local maximum.

saddle If �(^) is indefinite (it has both positive and negative eigenvalues),
^ is a saddle point.

These are sometimes called tests for concavity: minima occur where 5 is convex
and maxima where 5 is concave (i.e. where − 5 is convex).
It turns out, however, that solving section 8.1.1 directly for stationary points is

generally hard. Therefore, we will typically use an iterative technique for estimating
them.

8.1.2 The Gradient Points the Way

Although section 8.1.1 isn’t usually directly useful for computing stationary points,
it suggests iterative techniques that are. Several techniques rely on the insight that
the gradient points toward stationary points. Recall from section 5.3 that grad 5 is
a vector field that points in the direction of greatest increase in 5 .
Consider starting at some point x0 and wanting to move iteratively closer to a

stationary point. So, if one is seeking a maximum of 5 , then choose x1 to be in the
direction of grad 5 . If one is seeking a minimum of 5 , then choose x1 to be opposite
the direction of grad 5 .
The question becomes: how far
 should we go in (or opposite) the direction of the

gradient? Surely too-small
 will require more iteration and too-large
 will lead to
poor convergence or missing minima altogether. This framing of the problem is
called line search. There are a few common methods for choosing
, called the step
size, some more computationally efficient than others.
Two methods for choosing the step size are described below. Both are framed

as minimization methods, but changing the sign of the step turns them into
maximization methods.

8.1.3 The Classical Method

Let
g: = grad 5 (x:),

the gradient at the algorithm’s current estimate x: of the minimum. The classical
method of choosing
 is to attempt to solve analytically for

: = argmin

5 (x: −
g:).

This solution approximates the function 5 as one varies
. It is approximate because
as
 varies, so should x. But even with
 as the only variable, section 8.1.3 may be

Optimization 163

difficult or impossible to solve. However, this is sometimes called the “optimal”
choice for
. Here “optimality” refers not to practicality but to ideality. This method
is rarely used to solve practical problems.
The algorithm of the classical gradient descent method can be summarized in the

pseudocode of algorithm 1. It is described further in (Kreyszig 2011; § 22.1).

Algorithm 1 Classical gradient descent

1: procedure classical_minimizer(5 ,x0,))
2: while �x >) do ⊲ until threshold) is met
3: g:← grad 5 (x:)
4:
:← argmin
 5 (x: −
g:)
5: x:+1← x: −
: g:
6: �x←‖x:+1 − x: ‖
7: :← : + 1
8: return x: ⊲ the threshold was reached

8.1.4 The Barzilai and Borwein Method

In practice, several non-classical methods are used for choosing step size
. Most of
these construct criteria for step sizes that are too small and too large and prescribe
choosing some
 that (at least in certain cases) must be in the sweet-spot in between.
(Barzilai and Borwein 1988) developed such a prescription, which we now present.
Let Δx: = x: − x:−1 and Δg: = g: − g:−1. This method minimizes ‖ΔG −
Δ6‖2 by

choosing

: =
Δx: ·Δg:
Δg: ·Δg:

.

The algorithm of this gradient descent method can be summarized in the
pseudocode of algorithm 2. It is described further in (Barzilai and Borwein 1988).

Algorithm 2 Barzilai and Borwein gradient descent

1: procedure barzilai_minimizer(5 ,x0,))
2: while �x >) do ⊲ until threshold) is met
3: g:← grad 5 (x:)
4: Δg:← g: − g:−1
5: Δx:← x: − x:−1

6:
:←
Δx: ·Δg:
Δg: ·Δg:

7: x:+1← x: −
: g:
8: �x←‖x:+1 − x: ‖
9: :← : + 1
10: return x: ⊲ the threshold was reached

164 Chapter 8

Example 8.1

Consider the functions (a) 51 :R2→R and (b) 52 :R2→R defined as
51(x)= (G1 − 25)2 + 13(G2 + 10)2

52(x)=
1
2
x ·�x − b · x

where

�=

[
20 0
0 10

]
and (8.1)

1 =
[
1 1

]>
. (8.2)

Use the method of (Barzilai and Borwein 1988) starting at some x0 to find a
minimum of each function.

First, load some Python packages.

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option("display.precision", 3) # Show only three decimal places

We begin by writing a class Gradient_descent_min to perform the gradient
descent. This is not optimized for speed.

class Gradient_descent_min():
""" A Barzilai and Borwein gradient descent class.

Inputs:
* f: Python function of x variables
* x: list of symbolic variables (eg [x1, x2])
* x0: list of numeric initial guess of a min of f
* T: step size threshold for stopping the descent

To execute the gradient descent call descend method.

nb: This is only for gradients in cartesian
coordinates! Further work would be to implement
this in multiple or generalized coordinates.
See the grad method below for implementation.

"""

def __init__(self,f,x,x0,T):
self.f = f
self.x = sp.Array(x)

Optimization 165

self.x0 = np.array(x0)
self.T = T
self.n = len(x0) # size of x
self.g = sp.lambdify(x,self.grad(f,x),'numpy')
self.xk = np.array(x0)
self.table = {}

def descend(self):
unpack variables
f = self.f
x = self.x
x0 = self.x0
T = self.T
g = self.g
initialize variables
N = 0
x_k = x0
dx = 2*T # can't be zero
x_km1 = .9*x0-.1 # can't equal x0
g_km1 = np.array(g(*x_km1))
N_max = 100 # max iterations
table_data = [[N,x0,np.array(g(*x0)),0]]
while (dx > T and N < N_max) or N < 1:
N += 1 # increment index
g_k = np.array(g(*x_k))
dg_k = g_k - g_km1
dx_k = x_k - x_km1
alpha_k = abs(dx_k.dot(dg_k)/dg_k.dot(dg_k))
x_km1 = x_k # store
x_k = x_k - alpha_k*g_k
save
t_list = [N,x_k,g_k,alpha_k]
t_list = [

[f"{t_i:.3g}" for t_i in t] if isinstance(t,np.ndarray) \
else t for t in t_list]

table_data.append(t_list)
self.xk = np.vstack((self.xk,x_k))
store other variables
g_km1 = g_k
dx = np.linalg.norm(x_k - x_km1) # check

self.tabulater(table_data)

def tabulater(self,table_data):
table = pd.DataFrame(table_data,columns=['N','x_k','g_k','alpha_k'])
self.table['python'] = table
self.table['latex'] = table.to_latex(index=False)

166 Chapter 8

def grad(self,f,x): # cartesian coord's gradient
return sp.derive_by_array(f(x),x)

First, consider 51.

x1, x2 = sp.symbols('x1, x2')
x = sp.Array([x1, x2])
f1 = lambda x: (x[0]-25)**2 + 13*(x[1]+10)**2
gd = Gradient_descent_min(f=f1, x=x, x0=[-50,40], T=1e-8)

Perform the gradient descent.

gd.descend()

Print the interesting variables.

print(gd.table['python'])

N x_k g_k alpha_k
0 0 [-50, 40] [-150, 1300] 0.000
1 1 [-43.7, -15] [-150, 1.3e+03] 0.042
2 2 [-38.4, -10] [-137, -131] 0.038
3 3 [-33.1, -10] [-127, 0.124] 0.041
4 4 [25, -10] [-116, -0.00962] 0.500
5 5 [25, -10.1] [-0.0172, 0.115] 0.500
6 6 [25, -10] [-1.84e-08, -1.38] 0.039
7 7 [25, -10] [-1.7e-08, 0.00219] 0.038
8 8 [25, -10] [-1.57e-08, 0] 0.038

Now let’s lambdify the function f1 so we can plot.

f1_lambda = sp.lambdify((x1, x2), f1(x), 'numpy')

Now let’s plot a contour plot with the gradient descent overlaid.

Optimization 167

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F1 = f1_lambda(X1,X2)
plt.contourf(X1,X2,F1)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(

[points[:-1], points[1:]], axis=1
)
lc = LineCollection(

segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(

xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.draw()

168 Chapter 8

100 50 0 50 100

40

20

0

20

40

0

8000

16000

24000

32000

40000

48000

56000

64000

Figure 8.1. Gradient descent on 51.

Now consider 52.

A = sp.Matrix([[10, 0], [0, 20]])
b = sp.Matrix([[1, 1]])
def f2(x):
X = sp.Array([x]).tomatrix().T
return 1/2*X.dot(A*X) - b.dot(X)

gd = Gradient_descent_min(f=f2, x=x, x0=[50, -40], T=1e-8)

Perform the gradient descent.

gd.descend()

Print the interesting variables.

print(gd.table['python'])

N x_k g_k alpha_k
0 0 [50, -40] [499.0, -801.0] 0.000
1 1 [17.6, 12] [499, -801] 0.065
2 2 [8.07, -1.01] [175, 240] 0.054
3 3 [3.62, 0.174] [79.7, -21.2] 0.056
4 4 [0.489, -0.0468] [35.2, 2.49] 0.089
5 5 [0.104, 0.145] [3.89, -1.94] 0.099
6 6 [0.101, 0.00238] [0.0381, 1.9] 0.075
7 7 [0.1, 0.05] [0.00949, -0.952] 0.050
8 8 [0.1, 0.05] [0.00474, 9.58e-05] 0.050
9 9 [0.1, 0.05] [0.00237, -2.38e-09] 0.100
10 10 [0.1, 0.05] [1.93e-06, 2.37e-09] 0.100
11 11 [0.1, 0.05] [0, -2.37e-09] 0.100

Optimization 169

Now let’s lambdify the function f2 so we can plot.

f2_lambda = sp.lambdify((x1, x2), f2(x), 'numpy')

Now let’s plot a contour plot with the gradient descent overlaid.

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F2 = f2_lambda(X1,X2)
plt.contourf(X2,X1,F2)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(

[points[:-1], points[1:]], axis=1
)
lc = LineCollection(

segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(

xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()

170 Chapter 8

40 20 0 20 40100

75

50

25

0

25

50

75

100

0

10000

20000

30000

40000

50000

60000

70000

80000

Figure 8.2. Gradient descent on 52.

8.2 Constrained Linear Optimization LINK
DJ

Consider a linear objective function 5 :R=→R with variables G8 in
vector x and coefficients 28 in vector c:

5 (x)= c · x
subject to the linear constraints—restrictions on G8—

�x ≤ a, (8.3)

�x = b, and (8.4)

l ≤ x ≤ u (8.5)

where � and � are constant matrices and a , b, l , u are =-vectors. This is one for-
mulation of what is called a linear programming problem. Usually we want to
maximize 5 over the constraints. Such problems frequently arise throughout engi-
neering, for instance in manufacturing, transportation, operations, etc. They are
called constrained because there are constraints on x; they are called linear because
the objective function and the constraints are linear.
We call a pair (x , 5 (x)) for which x satisfies equation (8.3) a feasible solution. Of

course, not every feasible solution is optimal: a feasible solution is optimal iff there
exists no other feasible solution for which 5 is greater (assuming we’re maximizing).
We call the vector subspace of feasible solutions (⊂R= .

https://math.ricopic.one/dj
https://math.ricopic.one/dj

Optimization 171

8.2.1 Feasible Solutions Form a Polytope

Consider the effect of the constraints. Each of the equalities and inequalities defines
a linear hyperplane in R= (i.e. a linear subspace of dimension = − 1): either as a
boundary of ((inequality) or as a restriction of (to the hyperplane. When joined,
these hyperplanes are the boundary of ((equalities restrict (to lower dimension).
So we see that each of the boundaries of (is flat, which makes (a polytope (in R2,
a polygon). What makes this especially interesting is that polytopes have vertices
where the hyperplanes intersect. Solutions at the vertices are called basic feasible
solutions.

8.2.2 Only the Vertices Matter

Our objective function 5 is linear, so for some constant ℎ, 5 (x)= ℎ defines a level
set that is itself a hyperplane � in R= . If this hyperplane intersects (at a point x,
(x , 5 (x)= ℎ) is the corresponding solution. There are three possibilities when �
intersects (:

1. � ∩ (is a vertex of (,
2. � ∩ (is a boundary hyperplane of (, or
3. � ∩ (slices through the interior of (.
However, this third option implies that there exists a level set � corresponding

to 5 (x)= 6 such that � intersects (and 6 > ℎ, so solutions on � ∩ (are not optimal.
(We have not proven this, but it may be clear from our progression.) We conclude
that either the first or second case must be true for optimal solutions. And notice
that in both cases, a (potentially optimal) solution occurs at at least one vertex. The
key insight, then, is that an optimal solution occurs at a vertex of (.
This means we don’t need to search all of (, or even its boundary: we need

only search the vertices. Helpful as this is, it restricts us down to
(=
constraints

)
potentially optimal solutions—usually still too many to search in a naïve way. In
(lec:the_simplex_algorithm), this is mitigated by introducing a powerful searching
method.

172 Chapter 8

8.3 The Simplex Algorithm LINK
MT

The simplex algorithm (or “method”) is an iterative technique for
finding an optimal solution of the linear programming problem of
section 8.2. The details of the algorithm are somewhat involved, but the basic idea
is to start at a vertex of the feasible solution space (and traverse an edge of the
polytope that leads to another vertex with a greater value of 5 . Then, repeat this
process until there is no neighboring vertex with a greater value of 5 , at which point
the solution is guaranteed to be optimal.
Rather than present the details of the algorithm, we choose to show an example

using Python. There have been some improvements on the original algorithm that
have been implemented into many standard software packages, including Python’s
scipy package (Virtanen et al. 2019) module scipy.optimize.1

Example 8.2

Maximize the objective function

5 (x)= c · x (8.6)

for x ∈R2 and

c=
[
5 2

]>
(8.7)

subject to constraints

0≤ G1 ≤ 10 (8.8)

−5≤ G2 ≤ 15 (8.9)

4G1 + G2 ≤ 40 (8.10)

G1 + 3G2 ≤ 35 (8.11)

−8G1 − G2 ≥−75. (8.12)

First, load some Python packages.

from scipy.optimize import linprog
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Ecoding the Problem Before we can use linprog, we must first encode equa-
tions (8.6) and (8.8) into a form linprog will recognize. We begin with 5 , which
we can write as c · x with the coefficients of c as follows.

1. Another Python package pulp (PuLP) is probably more popular for linear programming; however,
we choose scipy.optimize because it has applications beyond linear programming.

https://math.ricopic.one/mt
https://math.ricopic.one/mt
https://pypi.org/project/PuLP/

Optimization 173

c = [-5, -2] # negative to find max

We’ve negated each constant because linprog minimizes 5 and we want to
maximize 5 . Now let’s encode the inequality constraints. We will write the left-
hand side coefficients in the matrix � and the right-hand-side values in vector a
such that

�x ≤ a. (8.13)

Notice that one of our constraint inequalities is ≥ instead of ≤. We can flip this
by multiplying the inequality by −1. We use simple lists to encode � and a.

A = [
[4, 1],
[1, 3],
[8, 1]

]
a = [40, 35, 75]

Now we need to define the lower l and upper u bounds of x. The function
linprog expects these to be in a single list of lower- and upper-bounds of each
G8 .

lu = [
(0, 10),
(-5,15),

]

We want to keep track of each step linprog takes. We can access these by
defining a function callback, to be passed to linprog.

x = [] # for storing the steps
def callback(res): # called at each step

global x
print(f"nit = {res.nit}, x_k = {res.x}")
x.append(res.x.copy()) # store

Now we need to call linprog. We don’t have any equality constraints, so we
need only use the keyword arguments A_ub=A and b_ub=a. For demonstration
purposes, we tell it to use the 'simplex' method, which is not as good as its
other methods, which use better algorithms based on the simplex.

174 Chapter 8

res = linprog(
c,
A_ub=A,
b_ub=a,
bounds=lu,
method='simplex',
callback=callback

)
x = np.array(x)

nit = 0, x_k = [0. -5.]
nit = 1, x_k = [10. -5.]
nit = 2, x_k = [8.75 5.]
nit = 3, x_k = [7.72727273 9.09090909]
nit = 4, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]

So the optimal solution (x , 5 (x)) is as follows.
print(f"optimum x: {res.x}")
print(f"optimum f(x): {-res.fun}")

optimum x: [7.72727273 9.09090909]
optimum f(x): 56.81818181818182

The last point was repeated

• Once because there was no adjacent vertex with greater 5 (x) and
• Twice because the algorithm calls callback twice on the last step.

Plotting When the solution space is in R2, it is helpful to graphically represent
the solution space, constraints, and the progression of the algorithm. We begin
by defining the inequality lines from � and a over the bounds of G1.

n = len(c) # number of variables x
m = np.shape(A)[0] # number of inequality constraints
x2 = np.empty([m,2])
for i in range(0,m):
x2[i,:] = -A[i][0]/A[i][1]*np.array(lu[0]) + a[i]/A[i][1]

Now we plot a contour plot of 5 over the bounds of G1 and G2 and overlay the
inequality constraints and the steps of the algorithm stored in x.

Optimization 175

lu_array = np.array(lu)
fig, ax = plt.subplots()
mpl.rcParams['lines.linewidth'] = 3
contour plot
X1 = np.linspace(*lu_array[0],100)
X2 = np.linspace(*lu_array[1],100)
X1, X2 = np.meshgrid(X1,X2)
F2 = -c[0]*X1 + -c[1]*X2 # negative because max hack
con = ax.contourf(X1,X2,F2)
cbar = fig.colorbar(con,ax=ax)
cbar.ax.set_ylabel('objective function')
bounds on x
un = np.array([1,1])
opts = {'c':'w','label':None,'linewidth':6}
plt.plot(lu_array[0],lu_array[1,0]*un,**opts)
plt.plot(lu_array[0],lu_array[1,1]*un,**opts)
plt.plot(lu_array[0,0]*un,lu_array[1],**opts)
plt.plot(lu_array[0,1]*un,lu_array[1],**opts)
inequality constraints
for i in range(0,m):

p, = plt.plot(lu[0],x2[i,:],c='w')
p.set_label('constraint')
steps
plt.plot(

x[:,0], x[:,1], '-o', c='r',
clip_on=False, zorder=20, label='simplex'

)
plt.ylim(lu_array[1])
plt.xlabel('x_1')
plt.ylabel('x_2')
plt.legend()
plt.show()

176 Chapter 8

0 2 4 6 8 10
x1

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

x
2

constraint
simplex

15

0

15

30

45

60

75

90

ob
jec

tiv
e f

un
cti

on

Figure 8.3. Simplex method on 5 .

Optimization 177

8.4 Problems LINK
WM

Problem 8.1 LINKCHORTLE Consider the function 5 :R2→R, defined as
5 (x)= cos(G1 − 4G2 + 2) sin(G2

1/4− G2
2/3+ 4) (8.14)

Use the method of Barzilai and Borwein (1988) starting at x0 = (1, 1) to find a
minimum of the function.

Problem 8.2 LINKCUMMERBUND Consider the functions (a) 51 :R2→R and (b) 52 :R2→
R defined as

51(x)= 4(G1 − 16)2 + (G2 + 64)2 + G1 sin2 G1 (8.15)

52(x)=
1
2
x ·�x − b · x (8.16)

where

�=

[
5 0
0 15

]
and (8.17a)

1 =
[
−2 1

]>
. (8.17b)

Use themethod of Barzilai and Borwein (1988) starting at some x0 to find aminimum
of each function.

Problem 8.3 LINKConsider the function 5 :R2→R defined as

5 (x)= sin G1 + cos G2 +
√
(G1 − 2)2 + (G2 + 1)2. (8.18)

Use the gradient descent method of Barzilai and Borwein (1988) with a step size

of) = 10−8 starting at (a) x0 =
[
0 0

]>
and (b) x′0 =

[
2 0

]>
to find minima of 5 . (c)

Explain why the two minima are different.

Problem 8.4 LINKMELTY Maximize the objective function

5 (x)= c · x (8.19a)

for x ∈R3 and

c=
[
3 −8 1

]>
(8.19b)

https://math.ricopic.one/wm
https://math.ricopic.one/wm
https://math.ricopic.one/chortle
https://math.ricopic.one/cummerbund
https://math.ricopic.one/
https://math.ricopic.one/melty

178 Chapter 8

subject to constraints

0≤ G1 ≤ 20 (8.20a)

−5≤ G2 ≤ 0 (8.20b)

5≤ G3 ≤ 17 (8.20c)

G1 + 4G2 ≤ 50 (8.20d)

2G1 + G3 ≤ 43 (8.20e)

−4G1 + G2 − 5G3 ≥−99. (8.20f)

Problem 8.5 LINKLATENESS Using gradient decent find the minimum of the function,

5 (G)= G2
1 + G2

2 −
G1

10
+ cos(2G1),

starting at the location G = [−0.5, 0.75]) , and with a constant value
= 0.01.
a. What is the location of the minimum you found?
b. Is this location the global minimum?

https://math.ricopic.one/lateness

9 Nonlinear Analysis LINK
AO

The ubiquity of near-linear systems and the tools we have for analyses thereof can
sometimes give the impression that nonlinear systems are exotic or even downright
flamboyant. However, a great many systems1 important for a mechanical engineer
are frequently hopelessly nonlinear. Here are a some examples of such systems.

• A robot arm.
• Viscous fluid flow (usually modelled by the navier-stokes equations).
• Nonequilibrium thermodynamics.
• Anything that “fills up” or “saturates.”
• Nonlinear optics.
• Einstein’s field equations (gravitation in general relativity).
• Heat radiation and nonlinear heat conduction.
• Fracture mechanics.
• The 3-body problem.
Lest we think this is merely an inconvenience, we should keep in mind that it

is actually the nonlinearity that makes many phenomena useful. For instance, the
laser depends on the nonlinearity of its optics. Similarly, transistors and the digital
circuits made thereby (including the microprocessor) wouldn’t function if their
physics were linear.
In this chapter, we will see some ways to formulate, characterize, and sim-

ulate nonlinear systems. Purely analytic techniques are few for nonlinear sys-
tems. Most are beyond the scope of this text, but we describe a few, mostly in
(lec:nonlinear-system-characteristics). Simulation via numerical integration of
nonlinear dynamical equations is the most accessible technique, so it is introduced.
We skip a discussion of linearization; of course, if this is an option, it is preferable.

Instead, we focus on the nonlinearizable.

1. As is customary, we frequently say “system” when we mean “mathematical system model.” Recall
that multiple models may be used for any given physical system, depending on what one wants to
know.

https://math.ricopic.one/ao
https://math.ricopic.one/ao

180 Chapter 9

For a good introduction to nonlinear dynamics, see (Strogatz and Dichter 2016).
A more engineer-oriented introduction is (Kolk and Lerman 1993).

9.1 Nonlinear State-Space Models LINK
G6

A state-space model has the general form

dx
dC

= f (x , u , C) (9.1)

y= g(x , u , C) (9.2)

where f and g are vector-valued functions that depend on the system.Nonlinear
state-space models are those for which f is a nonlinear functional of either x or
u. For instance, a state variable G1 might appear as G2

1 or two state variables might
combine as G1G2 or an input D1 might enter the equations as log D1.

9.1.1 Autonomous and Nonautonomous Systems

An autonomous system is one for which f (x), with neither time nor input appearing
explicitly. A nonautonomous system is one for which either C or u do appear
explicitly in f . It turns out that we can always write nonautonomous systems as
autonomous by substituting in u(C) and introducing an extra state variable for C
(Strogatz and Dichter 2016).
Therefore, without loss of generality, we will focus on ways of analyzing

autonomous systems.

9.1.2 Equilibrium

An equilibrium state (also called a stationary point) x is one for which dx/dC = 0. In
most cases, this occurs only when the input u is a constant u and, for time-varying
systems, at a given time C. For autonomous systems, equilibrium occurs when the
following holds:

f (x)= 0.
This is a system of nonlinear algebraic equations, which can be challenging to solve
for x. However, frequently, several solutions—that is, equilibrium states—do exist.

9.2 Nonlinear System Characteristics LINK
R2

Characterizing nonlinear systems can be challenging without the
tools developed for linear system characterization. However, there
are ways of characterizing nonlinear systems, and we’ll here explore a few.

https://math.ricopic.one/g6
https://math.ricopic.one/g6
https://math.ricopic.one/r2
https://math.ricopic.one/r2

Nonlinear Analysis 181

9.2.1 Those In-Common with Linear Systems

As with linear systems, the system order is either the number of state-variables
required to describe the system or, equivalently, the highest-order derivative in a
single scalar differential equation describing the system.
Similarly, nonlinear systems can have state variables that depend on time alone or

those that also depend on space (or some other independent variable). The former
lead to ordinary differential equations (ODEs) and the latter to partial differential
equations (PDEs).
Equilibrium was already considered in section 9.1.2.

9.2.2 Stability

In terms of system performance, perhaps no other criterion is as important as
stability.

Definition 9.1

If x is perturbed from an equilibrium state x, the response x(C) can:
1. asymptotically return to x (asymptotically stable),
2. diverge from x (unstable), or
3. remain perturned or oscillate about xwith a constant amplitude (marginally

stable).

Notice that this definition is actually local: stability in the neighborhood of one
equilibrium may not be the same as in the neighborhood of another.
Other than nonlinear systems’ lack of linear systems’ eigenvalues, poles, and

roots of the characteristic equation fromwhich to compute it, the primary difference
between the stability of linear and nonlinear systems is that nonlinear system
stability is often difficult to establish globally. Using a linear system’s eigenvalues,
it is straightforward to establish stable, unstable, and marginally stable subspaces
of state-space (via transforming to an eigenvector basis). For nonlinear systems, no
such method exists. However, we are not without tools to explore nonlinear system
stability. One mathematical tool to consider is Lyapunov stability theory, which is
beyond the scope of this course, but has good treatments in (Brogan 1991; Ch. 10)
and (Choukchou-Braham et al. 2013; App. A).

182 Chapter 9

9.2.3 Qualities of Equilibria

Equilibria (i.e. stationary points) come in a variety of qualities. It is instructive to
consider the first-order differential equation in state variable G with real constant A:

G′= AG − G3.

If we plot G′ versus G for different values of A, we obtain the plots of figure 9.1.

G

G′

(a) A < 0

G

G′

(b) A = 0

G

G′

(c) A > 0

Figure 9.1. Plots of G′ versus G for section 9.2.3.

By definition, equilibria occur when G′= 0, so the G-axis crossings of figure 9.1 are
equilibria. The blue arrows on the G-axis show the direction (sign) of state change G′,
quantified by the plots. For both (a) and (b), only one equilibrium exists: G = 0. Note
that the blue arrows in both plots point toward the equilibrium. In such cases—that
is, when a neighborhood exists around an equilibrium for which state changes point
toward the equilibrium—the equilibrium is called an attractor or sink. Note that
attractors are stable.
Now consider (c) of figure 9.1. When A > 0, three equilibria emerge. This change

of the number of equilibria with the changing of a parameter is called a bifurcation.
A plot of bifurcations versus the parameter is called a bifurcation diagram. The
G = 0 equilibrium now has arrows that point away from it. Such an equilibrium is
called a repeller or source and is unstable. The other two equilibria here are (stable)
attractors. Consider a very small initial condition G(0)= &. If & > 0, the repeller
pushes away G and the positive attractor pulls G to itself. Conversely, if & < 0, the
repeller again pushes away G and the negative attractor pulls G to itself.
Another type of equilibrium is called the saddle: one which acts as an attractor

along some lines and as a repeller along others. Wewill see this type in the following
example.

Nonlinear Analysis 183

Example 9.1

Consider the dynamical equation

G′= G2 + A
with A a real constant. Sketch G′ vs G for negative, zero, and positive A. Identify
and classify each of the equilibria.

TODO

9.3 Simulating Nonlinear Systems

Example 9.2 LINK
PW

Simulate a nonlinear unicycle in Python.

First, load some Python packages.
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

The state equation can be encoded via the following function f.

def f(t, x, u, c):
dxdt = [

x[3]*np.cos(x[2]),
x[3]*np.sin(x[2]),
x[4],
1/c[0] * u(t)[0],
1/c[1] * u(t)[1]

]
return dxdt

The input function u must also be defined.

def u(t):
return [

15*(1+np.cos(t)),
25*np.sin(3*t)

]

Define time spans, initial values, and constants

tspan = np.linspace(0, 50, 300)
xinit = [0,0,0,0,0]
mass = 10
inertia = 10
c = [mass,inertia]

https://math.ricopic.one/pw
https://math.ricopic.one/pw

184 Chapter 9

Solve differential equation:

sol = solve_ivp(
lambda t, x: f(t, x, u, c),
[tspan[0], tspan[-1]],
xinit,
t_eval=tspan

)

Let’s first plot the trajectory and instantaneous velocity.

xp = sol.y[3]*np.cos(sol.y[2])
yp = sol.y[3]*np.sin(sol.y[2])
fig, ax = plt.subplots()
plt.plot(sol.y[0],sol.y[1])
plt.quiver(sol.y[0],sol.y[1],xp,yp)
plt.xlabel('x')
plt.ylabel('y')
plt.show()

−75 −50 −25 0 25 50 75 100
G

−50

0

50

100

H

Figure 9.2. Trajectory and instantaneous velocity.

Nonlinear Analysis 185

9.4 Problems
LINK
5N

https://math.ricopic.one/5n
https://math.ricopic.one/5n

A Distribution Tables LINK
JT

This appendix includes the Gaussian distribution table and Student’s t-distribution table.

A.1 Gaussian Distribution Table LINK
O8

Below are plots of the Gaussian probability density function 5 and cumulative
distribution function Φ. Below them is Table A.1 of CDF values.

I1

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

I

G
au
ss
ia
n
P
D
F
5(
I
)

Φ(I1)
5 (I)

(a) PDF

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

interval bound I1

G
au
ss
ia
n
C
D
F
Φ
(I
1
)

(b) CDF

Figure A.1. The Gaussian PDF and CDF for I-scores.

https://math.ricopic.one/jt
https://math.ricopic.one/jt
https://math.ricopic.one/o8
https://math.ricopic.one/o8

188 Appendix A

Table A.1. I-score table Φ(I1)=%(I ∈ (−∞, I1]).
I1 .�0 .�1 .�2 .�3 .�4 .�5 .�6 .�7 .�8 .�9

-3.4� 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3� 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2� 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1� 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0� 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9� 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8� 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7� 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6� 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5� 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4� 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3� 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2� 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1� 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0� 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9� 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8� 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7� 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6� 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5� 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4� 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3� 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2� 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1� 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0� 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9� 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8� 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7� 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6� 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5� 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4� 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3� 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2� 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1� 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0� 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0� 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1� 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2� 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3� 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4� 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5� 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6� 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7� 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8� 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9� 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0� 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1� 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2� 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3� 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4� 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5� 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6� 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7� 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8� 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

Distribution Tables 189

Table A.1. I-score table Φ(I1)=%(I ∈ (−∞, I1]).
I1 .�0 .�1 .�2 .�3 .�4 .�5 .�6 .�7 .�8 .�9

1.9� 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0� 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1� 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2� 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3� 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4� 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5� 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6� 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7� 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8� 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9� 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0� 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1� 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2� 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3� 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4� 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

190 Appendix A

A.2 Student’s T-Distribution Table LINK
0Z

Below is the two-tail inverse student’s t-distribution table.

Table A.2: Two-tail inverse student’s t-distribution table.

percent probability

� 60.0 66.7 75.0 80.0 87.5 90.0 95.0 97.5 99.0 99.5 99.9

1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297
10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232
∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090

https://math.ricopic.one/0z
https://math.ricopic.one/0z

B Fourier and Laplace Tables LINK
3V

This appendix contains tables of Fourier and Laplace transforms.

B.1 Laplace Transforms LINK
LP

table B.1 is a table with functions of time 5 (C) on the left and correspond-
ing Laplace transforms !(B) on the right. Where applicable, B = �+ 9$ is the
Laplace transform variable,) is the time-domain period, $02�/) is the corresponding

angular frequency, 9 =
√
−1, 0 ∈R+, and 1, C0 ∈R are constants.

Table B.1. Laplace transform identities.

function of time C function of Laplace B

01 51(C) + 02 52(C) 01�1(B) + 02�2(B)

5 (C − C0) �(B)4−C0B

5 ′(C) B�(B) − 5 (0)
3= 5 (C)
3C=

B=�(B) + B(=−1) 5 (0) + B(=−2) 5 ′(0) + · · · + 5 (=−1)(0)ˆ C

0
5 (�)3� 1

B
�(B)

C 5 (C) −�′(B)

51(C) ∗ 52(C)=
ˆ ∞
−∞

51(�) 52(C − �)3� �1(B)�2(B)

�(C) 1

DB (C) 1/B

DA (C) 1/B2

C=−1/(= − 1)! 1/B=

4−0C
1

B + 0

https://math.ricopic.one/3v
https://math.ricopic.one/3v
https://math.ricopic.one/lp
https://math.ricopic.one/lp

192 Appendix B

C4−0C
1

(B + 0)2
1

(= − 1)! C
=−14−0C

1
(B + 0)=

1
0 − 1 (4

0C − 41C) 1
(B − 0)(B − 1) (0 ≠ 1)

1
0 − 1 (04

0C − 141C) B

(B − 0)(B − 1) (0 ≠ 1)

sin $C
$

B2 +$2

cos $C
B

B2 +$2

40C sin $C
$

(B − 0)2 +$2

40C cos $C
B − 0

(B − 0)2 +$2

B.2 Fourier Transforms LINK
FT

table B.2 is a table with functions of time 5 (C) on the left and corresponding
Fourier transforms �($) on the right. Where applicable,) is the time-domain

period, $02�/) is the corresponding angular frequency, 9 =
√
−1, 0 ∈R+, and 1, C0 ∈R are

constants. Furthermore, 54 and 50 are even and odd functions of time, respectively, and it
can be shown that any function 5 can be written as the sum 5 (C)= 54 (C) + 50(C). (Hsu 1970;
appendix E)

Table B.2. Fourier transform identities.

function of time C function of frequency $

01 51(C) + 02 52(C) 01�1($) + 02�2($)

5 (0C) 1
|0 | �($/0)

5 (−C) �(−$)

5 (C − C0) �($)4−9$C0

5 (C) cos $0C
1
2
�($−$0) +

1
2
�($+$0)

5 (C) sin $0C
1
92
�($−$0) −

1
92
�($+$0)

54 (C) <�($)

50(C) 9=�($)

�(C) 2� 5 (−$)

https://math.ricopic.one/ft
https://math.ricopic.one/ft

Fourier and Laplace Tables 193

5 ′(C) 9$�($)
3= 5 (C)
3C=

(9$)=�($)ˆ C

−∞
5 (�)3� 1

9$
�($) +��(0)�($)

−9C 5 (C) �′($)

(−9C)= 5 (C) 3=�($)
3$=

51(C) ∗ 52(C)=
ˆ ∞
−∞

51(�) 52(C − �)3� �1($)�2($)

51(C) 52(C)
1

2�
�1($) ∗ �2($)=

1
2�

ˆ ∞
−∞

�1(
)�2($−
)3

4−0CDB (C)
1

9$+ 0
4−0 |C |

20
02 +$2

4−0C
2 √

�/0 4−$2/(40)

1 for |C | < 0/2, else 0
0 sin(0$/2)
0$/2

C4−0CDB (C)
1

(0 + 9$)2
C=−1

(= − 1)! 4
−0C)=DB (C)

1
(0 + 9$)=

1
02 + C2

�
0
4−0 |$ |

�(C) 1

�(C − C0) 4−9$C0

DB (C) ��($) + 1
9$

DB (C − C0) ��($) + 1
9$
4−9$C0

1 2��($)

C 2�9�′($)

C= 2�9=
3=�($)
3$=

4 9$0C 2��($−$0)

cos $0C ��($−$0) +��($+$0)

sin $0C −9��($−$0) + 9��($+$0)

DB (C) cos $0C
9$

$2
0 −$2

+ �
2
�($−$0) +

�
2
�($+$0)

DB (C) sin $0C
$0

$2
0 −$2

+ �
29

�($−$0) −
�
29

�($+$0)

194 Appendix B

CDB (C) 9��′($) − 1/$2

1/C �9 − 2�9DB ($)

1/C= (−9$)=−1

(= − 1)! (�9 − 2�9DB ($))

sgn C
2
9$

∞∑
==−∞

�(C − =)) $0

∞∑
==−∞

�($− =$0)

C Mathematics Reference LINK
W4

This appendix contains a reference for algebra, trigonometry, and other mathematical topics.

C.1 Quadratic Forms LINK
0N

The solution to equations of the form 0G2 + 1G + 2 = 0 is

G =
−1 ±

√
12 − 402
20

. (C.1)

C.1.1 H

is is accomplished by re-writing the quadratic formula in the form of the left-hand-side (LHS)
of this equality, which describes factorization

G2 + 2Gℎ + ℎ2 = (G + ℎ)2. (C.2)

C.2 Trigonometry

C.2.1 Triangle Identities LINK
9X

With reference to figure C.1, the law of sines is

sin

0

=
sin �
1

=
sin �

2
(C.3)

and the law of cosines is

22 = 02 + 12 − 201 cos � (C.4a)

12 = 02 + 22 − 202 cos � (C.4b)

02 = 22 + 12 − 221 cos
 (C.4c)

https://math.ricopic.one/w4
https://math.ricopic.one/w4
https://math.ricopic.one/0n
https://math.ricopic.one/0n
https://math.ricopic.one/9x
https://math.ricopic.one/9x

196 Appendix C

1

2
0

 �

�

Figure C.1. Triangle for the law of sines and law of cosines.

C.2.2 Reciprocal Identities

csc D =
1

sin D
(C.5a)

sec D =
1

cos D
(C.5b)

cot D =
1

tan D
(C.5c)

C.2.3 Pythagorean Identities

1= sin2 D + cos2 D (C.6a)

sec2 D = 1+ tan2 D (C.6b)

csc2 D = 1+ cot2 D (C.6c)

C.2.4 Cofunction Identities

sin
(�

2
− D

)
= cos D (C.7a)

cos
(�

2
− D

)
= sin D (C.7b)

tan
(�

2
− D

)
= cot D (C.7c)

csc
(�

2
− D

)
= sec D (C.7d)

sec
(�

2
− D

)
= csc D (C.7e)

cot
(�

2
− D

)
= tan D (C.7f)

Mathematics Reference 197

C.2.5 Even-Odd Identities

sin(−D)=− sin D (C.8a)

cos(−D)= cos D (C.8b)

tan(−D)=− tan D (C.8c)

C.2.6 Sum-Difference Formulas (AM or Lock-In)

sin(D ± E)= sin D cos E ± cos D sin E (C.9a)

cos(D ± E)= cos D cos E ∓ sin D sin E (C.9b)

tan(D ± E)= tan D ± tan E
1∓ tan D tan E

(C.9c)

C.2.7 Double Angle Formulas

sin(2D)= 2 sin D cos D (C.10a)

cos(2D)= cos2 D − sin2 D (C.10b)

= 2 cos2 D − 1 (C.10c)

= 1− 2 sin2 D (C.10d)

tan(2D)= 2 tan D
1− tan2 D

(C.10e)

C.2.8 Power-Reducing or Half-Angle Formulas

sin2 D =
1− cos(2D)

2
(C.11a)

cos2 D =
1+ cos(2D)

2
(C.11b)

tan2 D =
1− cos(2D)
1+ cos(2D) (C.11c)

198 Appendix C

C.2.9 Sum-To-Product Formulas

sin D + sin E = 2 sin
D + E

2
cos

D − E
2

(C.12a)

sin D − sin E = 2 cos
D + E

2
sin

D − E
2

(C.12b)

cos D + cos E = 2 cos
D + E

2
cos

D − E
2

(C.12c)

cos D − cos E =−2 sin
D + E

2
sin

D − E
2

(C.12d)

C.2.10 Product-To-Sum Formulas

sin D sin E =
1
2
[cos(D − E) − cos(D + E)] (C.13a)

cos D cos E =
1
2
[cos(D − E) + cos(D + E)] (C.13b)

sin D cos E =
1
2
[sin(D + E) + sin(D − E)] (C.13c)

cos D sin E =
1
2
[sin(D + E) − sin(D − E)] (C.13d)

C.2.11 Two-To-One Formulas

� sin D + � cos D =� sin(D +)) (C.14a)

=� cos(D +#)where (C.14b)

� =

√
�2 + �2 (C.14c)

)= arctan
�

�
(C.14d)

#=− arctan
�

�
(C.14e)

Mathematics Reference 199

C.3 Matrix Inverses LINK
38

This is a guide to inverting 1× 1, 2× 2, and = × = matrices.
Let � be the 1× 1 matrix

�=
[
0
]
.

The inverse is simply the reciprocal:

�−1 =
[
1/0

]
.

Let � be the 2× 2 matrix

�=

[
111 112
121 122

]
.

It can be shown that the inverse follows a simple pattern:

�−1 =
1

det �

[
122 −112
−121 111

]
=

1
111122 − 112121

[
122 −112
−121 111

]
.

Let � be an = × = matrix. It can be shown that its inverse is

�−1 =
1

det�
adj�,

where adj is the adjoint of �.

C.4 Euler’s Formulas LINK
EU

Euler’s formula is our bridge back-and forth between trigonomentric forms
(cos� and sin�) and complex exponential form (4 9�):

4 9� = cos�+ 9 sin�. (C.15)

Here are a few useful identities implied by Euler’s formula.

4−9� = cos�− 9 sin� (C.16a)

cos�=<(4 9�) (C.16b)

=
1
2

(
4 9� + 4−9�

)
(C.16c)

sin�==(4 9�) (C.16d)

=
1
92

(
4 9� − 4−9�

)
. (C.16e)

https://math.ricopic.one/38
https://math.ricopic.one/38
https://math.ricopic.one/eu
https://math.ricopic.one/eu

200 Appendix C

C.5 Laplace Transforms LINK
40

The definition of the one-side Laplace and inverse Laplace transforms follow.

Definition C.1: Laplace transforms (one-sided)

Laplace transform ℒ:

ℒ(H(C))=.(B)=
ˆ ∞

0
H(C)4−BC3C. (C.17)

Inverse Laplace transform ℒ−1:

ℒ−1(.(B))= H(C)= 1
2�9

ˆ �+9∞

�−9∞
.(B)4BC3B. (C.18)

See table B.1 for a list of properties and common transforms.

https://math.ricopic.one/40
https://math.ricopic.one/40

Bibliography

Ash, Robert B. 2008. Basic Probability Theory. Dover Publications, Inc.

Bagaria, Joan. 2019. “Set Theory.” In The Stanford Encyclopedia of Philosophy, Fall 2019, edited
by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Baghramian, Maria, and J. Adam Carter. 2019. “Relativism.” In The Stanford Encyclopedia of
Philosophy,Winter 2019, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University.

Barker, Stephen, and Mark Jago. 2012. “Being Positive About Negative Facts.” Philosophy and
Phenomenological Research 85 (1): 117–138. https://doi.org/10.1111/j.1933-1592.2010.00479.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1933-1592.2010.00479.x. https://on
linelibrary.wiley.com/doi/abs/10.1111/j.1933-1592.2010.00479.x.

Barzilai, Jonathan, and Jonathan M. Borwein. 1988. “Two-Point Step Size Gradient Methods.”
IMA Journal of Numerical Analysis 8, no. 1 (January): 141–148. This includes an innovative line
search method., https://doi.org/10.1093/imanum/8.1.141. https://doi.org/10.1093/imanum
/8.1.141.

Biletzki, Anat, and Anat Matar. 2018. “Ludwig Wittgenstein.” In The Stanford Encyclopedia of
Philosophy, Summer 2018, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University. An introduction to Wittgenstein and his thought.

Bove, Antonio, F. (Ferruccio) Colombini, and Daniele Del Santo. 2006. Phase space analysis of
partial differential equations [in eng]. Progress in nonlinear differential equations and their
applications ; v. 69. Birkhäuser.

Brogan, William L. 1991.Modern Control Theory. Third. Prentice Hall.

Bullo, Francesco, and Andrew D. Lewis. 2005. Geometric control of mechanical systems: modeling,
analysis, and design for simple mechanical control systems. Edited by J.E. Marsden, L. Sirovich,
and M. Golubitsky. Springer.

Choukchou-Braham, A., B. Cherki, M. Djemaı̈, and K. Busawon. 2013. Analysis and Control of
Underactuated Mechanical Systems. SpringerLink : Bücher. Springer International Publishing.
https://link.springer.com/content/pdf/bbm%3A978-3-319-02636-7%2F1.pdf.

Ciesielski, K. 1997. Set Theory for the Working Mathematician. London Mathematical Society
Student Texts. Cambridge University Press. A readable introduction to set theory.

https://doi.org/10.1111/j.1933-1592.2010.00479.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1933-1592.2010.00479.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1933-1592.2010.00479.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1933-1592.2010.00479.x
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://link.springer.com/content/pdf/bbm%3A978-3-319-02636-7%2F1.pdf

202 References

David, Marian. 2016. “The Correspondence Theory of Truth.” In The Stanford Encyclopedia
of Philosophy, Fall 2016, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University. A detailed overview of the correspondence theory of truth.

Dolby, David. 2016. “Wittgenstein on Truth.” Chap. 27 in A Companion to Wittgenstein, 433–
442. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118884607.ch27. eprint: https://o
nlinelibrary.wiley.com/doi/pdf/10.1002/9781118884607.ch27. https://onlinelibrary.wiley
.com/doi/abs/10.1002/9781118884607.ch27.

Enderton, H.B. 1977. Elements of Set Theory. Elsevier Science. A gentle introduction to set theory
and mathematical reasoning—a great place to start.

Glanzberg, Michael. 2018. “Truth.” In The Stanford Encyclopedia of Philosophy, Fall 2018, edited
by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Glock, Hans Johann. 2006. “Truth in the Tractatus.” Synthese 148, no. 2 (January): 345–368.
https://doi.org/10.1007/s11229-004-6226-2. https://doi.org/10.1007/s11229-004-6226-2.

Gómez-Torrente,Mario. 2019. “Alfred Tarski.” In The Stanford Encyclopedia of Philosophy, Spring
2019, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Guyer, Paul, and Rolf-Peter Horstmann. 2018. “Idealism.” In The Stanford Encyclopedia of
Philosophy,Winter 2018, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University.

Haberman, R. 2018. Applied Partial Differential Equations with Fourier Series and Boundary Value
Problems (Classic Version). Pearson Modern Classics for Advanced Mathematics. Pearson
Education Canada.

Hegel, G.W.F., and A.V. Miller. 1998. Phenomenology of Spirit.Motilal Banarsidass.

Hodges, Wilfrid. 2018a. “Model Theory.” In The Stanford Encyclopedia of Philosophy, Fall 2018,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Hodges, Wilfrid. 2018b. “Tarski’s Truth Definitions.” In The Stanford Encyclopedia of Philosophy,
Fall 2018, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Hsu, Hwei P. 1970. Fourier Analysis. Simon / Schuster. http://gen.lib.rus.ec/book/index.php
?md5=24D6068CC9DEC5E41EC67CC79FD78912.

Hylton, Peter, and Gary Kemp. 2019. “Willard Van Orman Quine.” In The Stanford Encyclopedia
of Philosophy, Spring 2019, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University.

Jaynes, E.T., E.T.J. Jaynes, G.L. Bretthorst, and Cambridge University Press. 2003. Probability
Theory: The Logic of Science. Cambridge University Press. An excellent and comprehensive
introduction to probability theory.

Kant, I., P. Guyer, and A.W. Wood. 1999. Critique of Pure Reason. The Cambridge Edition of
the Works of Immanuel Kant. Cambridge University Press.

Kennedy, Juliette. 2018. “Kurt Gödel.” In The Stanford Encyclopedia of Philosophy,Winter 2018,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Khlentzos, Drew. 2016. “Challenges to Metaphysical Realism.” In The Stanford Encyclopedia of
Philosophy,Winter 2016, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University.

https://doi.org/10.1002/9781118884607.ch27
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118884607.ch27
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118884607.ch27
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118884607.ch27
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118884607.ch27
https://doi.org/10.1007/s11229-004-6226-2
https://doi.org/10.1007/s11229-004-6226-2
http://gen.lib.rus.ec/book/index.php?md5=24D6068CC9DEC5E41EC67CC79FD78912
http://gen.lib.rus.ec/book/index.php?md5=24D6068CC9DEC5E41EC67CC79FD78912

References 203

Klein, Peter. 2015. “Skepticism.” In The Stanford Encyclopedia of Philosophy, Summer 2015, edited
by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Kline, M. 1982.Mathematics: The Loss of Certainty. A Galaxy book. Oxford University Press.
A detailed account of the “illogical” development of mathematics and an exposition of its
therefore remarkable utility in describing the world., https://books.google.com/books?id=
RNwnUL33epsC.

Kolk, W. Richard, and Robert A. Lerman. 1993. Nonlinear System Dynamics. 1st ed. Springer
US. http://gen.lib.rus.ec/book/index.php?md5=589b0829bfe0fda7d4b52f0a09122064.

Kreyszig, Erwin. 2011. Advanced Engineering Mathematics. 10th. John Wiley & Sons, Limited.
The authoritative resource for engineering mathematics. It includes detailed accounts of
probability, statistics, vector calculus, linear algebra, fourier analysis, ordinary and partial
differential equations, and complex analysis. It also includes several other topics with varying
degrees of depth. Overall, it is the best place to start when seeking mathematical guidance.

Lee, John M. 2012. Introduction to Smooth Manifolds. Second. Vol. 218. Graduate Texts in
Mathematics. Springer.

Legg, Catherine, and Christopher Hookway. 2019. “Pragmatism.” In The Stanford Encyclopedia
of Philosophy, Spring 2019, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University. An introductory article on the philsophical movement “pragmatism.” It includes
an important clarification of the pragmatic slogan, “truth is the end of inquiry.”

Raatikainen, Panu. 2018. “Gödel’s Incompleteness Theorems.” In The Stanford Encyclopedia
of Philosophy, Fall 2018, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University. A through and contemporary description of Gödel’s incompleteness theorems,
which have significant implications for the foundations and function of mathematics and
mathematical truth.

Redding, Paul. 2018. “Georg Wilhelm Friedrich Hegel.” In The Stanford Encyclopedia of Phi-
losophy, Summer 2018, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford
University.

Schey, H.M. 2005.Div, Grad, Curl, and All that: An Informal Text on Vector Calculus.W.W.Norton.
https://books.google.com/books?id=sembQgAACAAJ.

Shields, Christopher. 2016. “Aristotle.” In The Stanford Encyclopedia of Philosophy,Winter 2016,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Skiena, Steven S. 2001. Calculated Bets: Computers, Gambling, and Mathematical Modeling to Win.
Outlooks. Cambridge University Press. This includes a lucid section on probability versus
statistics, also available here: https://www3.cs.stonybrook.edu/~skiena/jaialai/excerpts/no
de12.html., https://doi.org/10.1017/CBO9780511547089.

Smith, George. 2008. “Isaac Newton.” In The Stanford Encyclopedia of Philosophy, Fall 2008,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Stoljar, Daniel, andNic Damnjanovic. 2014. “TheDeflationary Theory of Truth.” In The Stanford
Encyclopedia of Philosophy, Fall 2014, edited by Edward N. Zalta. Metaphysics Research Lab,
Stanford University.

Strauss, W.A. 2007. Partial Differential Equations: An Introduction.Wiley. A thorough and yet
relatively compact introduction.

https://books.google.com/books?id=RNwnUL33epsC
https://books.google.com/books?id=RNwnUL33epsC
http://gen.lib.rus.ec/book/index.php?md5=589b0829bfe0fda7d4b52f0a09122064
https://books.google.com/books?id=sembQgAACAAJ
https://www3.cs.stonybrook.edu/~skiena/jaialai/excerpts/node12.html
https://www3.cs.stonybrook.edu/~skiena/jaialai/excerpts/node12.html
https://doi.org/10.1017/CBO9780511547089

204 References

Strogatz, S.H., and M. Dichter. 2016. Nonlinear Dynamics and Chaos. Second. Studies in
Nonlinearity. Avalon Publishing.

Textor, Mark. 2016. “States of Affairs.” In The Stanford Encyclopedia of Philosophy,Winter 2016,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, et al. 2019. “SciPy 1.0–Fundamental Algo-
rithms for Scientific Computing in Python.” arXiv e-prints (July): arXiv:1907.10121. arXiv:
1907.10121 [cs.MS].

Wikipedia. 2019a. Algebra —Wikipedia, The Free Encyclopedia. [Online; accessed 26-October-
2019].

Wikipedia. 2019b. Carl Friedrich Gauss —Wikipedia, The Free Encyclopedia. [Online; accessed
26-October-2019].

Wikipedia. 2019c. Euclid—Wikipedia, The Free Encyclopedia. [Online; accessed 26-October-2019].

Wikipedia. 2019d. First-order logic — Wikipedia, The Free Encyclopedia. [Online; accessed 29-
October-2019].

Wikipedia. 2019e. Leonhard Euler — Wikipedia, The Free Encyclopedia. [Online; accessed 26-
October-2019].

Wikipedia. 2019f. Linguistic turn—Wikipedia, The Free Encyclopedia. [Online; accessed 23-
October-2019]. Hey, we all do it.

Wikipedia. 2019g. Probability space — Wikipedia, The Free Encyclopedia. [Online; accessed 31-
October-2019].

Wikipedia. 2019h. Propositional calculus — Wikipedia, The Free Encyclopedia. [Online; accessed
29-October-2019].

Wikipedia. 2019i. Quaternion —Wikipedia, The Free Encyclopedia. [Online; accessed 26-October-
2019].

Wikipedia. 2019j. Set-builder notation — Wikipedia, The Free Encyclopedia. [Online; accessed
29-October-2019].

Wikipedia. 2019k.William Rowan Hamilton—Wikipedia, The Free Encyclopedia. [Online; accessed
26-October-2019].

Wittgenstein, L., P.M.S. Hacker, and J. Schulte. 2010. Philosophical Investigations.Wiley.

Wittgenstein, Ludwig. 1922. Tractatus Logico-Philosophicus. Project Gutenberg. Edited by C.},
familyi=C., given=K. Ogden, giveni=. O. International Library of Psychology Philosophy
and Scientific Method. Kegan Paul, Trench, Trubner & Co., Ltd. A brilliant work on what is
possible to express in language—and what is not. As Wittgenstein puts it, “What can be said
at all can be said clearly; and whereof one cannot speak thereof one must be silent.”

Žižek, Slavoj. 2012. Less Than Nothing: Hegel and the Shadow of Dialectical Materialism. Verso.
This is one of the most interesting presentations of Hegel and Lacan by one of the most
exciting contemporary philosophers.

https://arxiv.org/abs/1907.10121

Contributors

Associate Professor Rico A. R. Picone
Department of Mechanical Engineering
Saint Martin’s University
Lacey, Washington, USA

	Table of Contents
	1 Mathematics
	1.1 Truth
	1.1.1 Neo-classical theories of truth
	1.1.2 The picture theory
	1.1.3 The relativity of truth
	1.1.4 Other ideas about truth
	1.1.5 Where this leaves us

	1.2 The foundations of mathematics
	1.2.1 Algebra ex nihilo
	1.2.2 The application of mathematics to science
	1.2.3 The rigorization of mathematics
	1.2.4 The foundations of mathematics are built
	1.2.5 The foundations have cracks
	1.2.6 Mathematics is considered empirical

	1.3 Problems

	2 Mathematical reasoning, logic, and set theory
	2.1 Introduction to set theory
	2.2 Logical connectives and quantifiers
	2.2.1 Logical connectives
	2.2.2 Quantifiers

	2.3 Problems

	3 Probability
	3.1 Probability and measurement
	3.2 Basic probability theory
	3.2.1 Algebra of events

	3.3 Independence and conditional probability
	3.3.1 Conditional probability

	3.4 Bayes' theorem
	3.4.1 Testing outcomes
	3.4.2 Posterior probabilities

	3.5 Random variables
	3.6 Probability density and mass functions
	3.6.1 Binomial PMF
	3.6.2 Gaussian PDF

	3.7 Expectation
	3.8 Central moments
	3.9 Transforming Random Variables
	3.10 Multivariate probability and correlation
	3.10.1 Marginal probability
	3.10.2 Covariance
	3.10.3 Conditional probability and dependence

	3.11 Problems

	4 Statistics
	4.1 Populations, samples, and machine learning
	4.2 Estimation of sample mean and variance
	4.2.1 Estimation and sample statistics
	4.2.2 Sample mean, variance, and standard deviation
	4.2.3 Sample statistics as random variables
	4.2.4 Nonstationary signal statistics

	4.3 Confidence
	4.3.1 Checking the Central Limit Theorem

	4.4 Student confidence
	4.5 Regression
	4.6 Problems

	5 Vector calculus
	5.1 Divergence, surface integrals, and flux
	5.1.1 Flux and surface integrals
	5.1.2 Continuity
	5.1.3 Divergence
	5.1.4 Exploring divergence

	5.2 Curl, line integrals, and circulation
	5.2.1 Line integrals
	5.2.2 Circulation
	5.2.3 Curl
	5.2.4 Zero curl, circulation, and path independence
	5.2.5 Exploring curl

	5.3 Gradient
	5.3.1 Gradient
	5.3.2 Vector fields from gradients are special
	5.3.3 Exploring gradient

	5.4 Stokes and divergence theorems
	5.4.1 The divergence theorem
	5.4.2 The Kelvin-Stokes' theorem
	5.4.3 Related theorems

	5.5 Problems

	6 Fourier and orthogonality
	6.1 Fourier series
	6.2 Fourier transform
	6.3 Generalized fourier series and orthogonality
	6.4 Problems

	7 Partial differential equations
	7.1 Classifying PDEs
	7.2 Sturm-liouville problems
	7.2.1 Types of boundary conditions

	7.3 PDE solution by separation of variables
	7.4 The 1D wave equation
	7.5 Problems

	8 Optimization
	8.1 Gradient descent
	8.1.1 Stationary points
	8.1.2 The gradient points the way
	8.1.3 The classical method
	8.1.4 The Barzilai and Borwein method

	8.2 Constrained linear optimization
	8.2.1 Feasible solutions form a polytope
	8.2.2 Only the vertices matter

	8.3 The simplex algorithm
	8.4 Problems

	9 Nonlinear analysis
	9.1 Nonlinear state-space models
	9.1.1 Autonomous and nonautonomous systems
	9.1.2 Equilibrium

	9.2 Nonlinear system characteristics
	9.2.1 Those in-common with linear systems
	9.2.2 Stability
	9.2.3 Qualities of equilibria

	9.3 Simulating Nonlinear Systems
	9.4 Problems

	A Distribution Tables
	A.1 Gaussian Distribution Table
	A.2 Student's t-distribution Table

	B Fourier and Laplace Tables
	B.1 Laplace Transforms
	B.2 Fourier Transforms

	C Mathematics Reference
	C.1 Quadratic Forms
	C.1.1 H

	C.2 Trigonometry
	C.2.1 Triangle Identities
	C.2.2 Reciprocal Identities
	C.2.3 Pythagorean Identities
	C.2.4 Cofunction Identities
	C.2.5 Even-Odd Identities
	C.2.6 Sum-Difference Formulas (AM or Lock-In)
	C.2.7 Double Angle Formulas
	C.2.8 Power-Reducing or Half-Angle Formulas
	C.2.9 Sum-to-Product Formulas
	C.2.10 Product-to-Sum Formulas
	C.2.11 Two-to-One Formulas

	C.3 Matrix Inverses
	C.4 Euler's Formulas
	C.5 Laplace Transforms

	Bibliography

