### 3.2 Basic Probability Theory

The mathematical model for a class of measurements is called the **probability space** and is composed of a mathematical triple of a sam-

ple space  $\Omega$ ,  $\sigma$ -algebra  $\mathcal{F}$ , and probability measure P, typically denoted ( $\Omega$ ,  $\mathcal{F}$ , P), each of which we will consider in turn (Wikipedia 2019g).

The **sample space**  $\Omega$  of an experiment is the set representing all possible **outcomes** of the experiment. If a coin is flipped, the sample space is  $\Omega = \{H, T\}$ , where *H* is *heads* and *T* is *tails*. If a coin is flipped twice, the sample space could be

$$\Omega = \{HH, HT, TH, TT\}.$$

However, *the same experiment can have different sample spaces*. For instance, for two coin flips, we could also choose

 $\Omega = \{$ the flips are the same, the flips are different $\}$ .

We base our choice of  $\Omega$  on the problem at hand.

An **event** is a subset of the sample space. That is, an event corresponds to a yes-or-no question about the experiment. For instance, event *A* (remember:  $A \subseteq \Omega$ ) in the coin flipping experiment (two flips) might be  $A = \{HT, TH\}$ . *A* is an event that corresponds to the question, "Is the second flip different than the first?" *A* is the event for which the answer is "yes."

## 3.2.1 Algebra of Events

Because events are sets, we can perform the usual set operations with them.

## Example 3.1

Consider a toss of a single die. We choose the sample space to be  $\Omega = \{1, 2, 3, 4, 5, 6\}$ . Let the following define events.

 $A \equiv \{\text{the result is even}\} = \{2, 4, 6\}$ 

 $B \equiv \{\text{the result is greater than } 2\} = \{3, 4, 5, 6\}.$ 

Find the following event combinations:

```
A \cup B \quad A \cap B \quad A \setminus B \quad B \setminus A \quad \overline{A} \setminus B.
```

 $A \cup B = \{2, 3, 4, 5, 6\}$  (even or greater than 2)

 $A \cap B = \{4, 6\}$  (even and greater than 2)

 $A \setminus B = \{2\}$  (even but not greater than 2)

 $B \setminus A = \{3, 5\}$  (greater than two and odd)

 $\overline{A} \setminus B = \{1, 3, 5\} \setminus \{3, 4, 5, 6\}$  (not even and not greater than 2).



The  $\sigma$ -algebra  $\mathcal{F}$  is the collection of events of interest. Often,  $\mathcal{F}$  is the set of all possible events given a sample space  $\Omega$ , which is just the power set of  $\Omega$  (Wikipedia 2019g). When referring to an event, we often state that it is an element of  $\mathcal{F}$ . For instance, we might say an event  $A \in \mathcal{F}$ .

We're finally ready to assign probabilities to events. We define the **probability measure**  $P : \mathcal{F} \rightarrow [0, 1]$  to be a function satisfying the following conditions.

- 1. For every event  $A \in \mathcal{F}$ , the probability measure of A is greater than or equal to zero—i.e.  $P(A) \ge 0$ .
- 2. If an event is the entire sample space, its probability measure is unity—i.e. if  $A = \Omega$ , P(A) = 1.
- 3. If events  $A_1, A_2, \cdots$  are disjoint sets (no elements in common), then  $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$ .

We conclude the basics by observing four facts that can be proven from the definitions above.

- 1.  $P(\emptyset) = 0$ .
- 2.  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ .
- 3. If  $B \subset A$ , then P(B) < P(A). In fact,  $P(A \setminus B) = P(A) P(B)$ .
- 4.  $P(A_1 \cup A_2 \cup \cdots) \le P(A_1) + P(A_2) + \cdots$ .

## 3.3 Independence and Conditional Probability



Two events *A* and *B* are **independent** if and only if

$$P(A \cap B) = P(A)P(B).$$

If an experimenter must make a judgment without data about the independence of events, they base it on their knowledge of the events, as discussed in the following example.

# Example 3.2

Answer the following questions and imperatives.

- 1. Consider a single fair die rolled twice. What is the probability that both rolls are 6?
- 2. What changes if the die is biased by a weight such that  $P({6}) = 1/7$ ?
- 3. What changes if the die is biased by a magnet, rolled on a magnetic dicerolling tray such that  $P(\{6\}) = 1/7$ ?
- 4. What changes if there are two dice, biased by weights such that for each  $P(\{6\}) = 1/7$ , rolled once, both resulting in 6?
- 5. What changes if there are two dice, biased by magnets, rolled together?