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3.6 Probability Density and Mass Functions

Consider an experiment that measures a random variable. We can plot
the relative frequency of the measurand landing in different “bins”
(ranges of values). This is called a frequency distribution or a probability mass
function (PMF).
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Figure 3.5. Plot of a probability mass function.

Consider, for instance, a probability mass function as plotted in figure 3.5, where
a frequency a; can be interpreted as an estimate of the probability of the measurand
being in the ith interval. The sum of the frequencies must be unity:
k
Z a;= 1
i=1
with k being the number of bins.
The frequency density distribution is similar to the frequency distribution, but
with a; > a;/Ax, where Ax is the bin width.
If we let the bin width approach zero, we derive the probability density function
(PDF)

k
flx)= kli_)rr;o Z aj/Ax.
Ax—0 j=1
We typically think of a probability density function f, like the one in figure 3.6 as a

function that can be integrated over to find the probability of the random variable
(measurand) being in an interval [a, b]:

b
P(xela,b])= / Fdx.
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Figure 3.6. Plot of a probability density function.

We now consider a common PMF and a common PDF.

3.6.1 Binomial PMF

Consider a random binary sequence of length n such that each element is a random
0 or 1, generated independently, like

(1101111/0/"‘ /1/1)'

Let events {1} and {0} be mutually exclusive and exhaustive and P({1}) =p. The
probability of the sequence above occurring is

P((1,0,1,1,0,---,1,1))=p(1 =p)pp(1=p)--- pp.

There are n choose k,
A n!
k| ki(n-k)

possible combinations of k ones for n bits. Therefore, the probability of any
combination of k ones in a series is

n _
= ()=
We call section 3.6.1 the binomial distribution PDF.

Example 3.7

Consider a field sensor that fails for a given measurement with probability p.
Given n measurements, plot the binomial PMF as a function of k failed measure-
ments for a few different probabilities of failure p € [0.04,0.25,0.5,0.75, 0.96].
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listing 3.1 shows Python code for constructing the PDFs plotted in figure 3.7.
Note that the symmetry is due to the fact that events {1} and {0} are mutually
exclusive and exhaustive.
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Figure 3.7. Binomial PDF for n = 100 measurements and different values of P({1}) =p,
the probability of a measurement error. The plot is generated by the Python code of
?2.
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Listing 3.1 Python code that generates the binomial PDF

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import comb

# Parameters

n = 100

k_a = np.arange(l, n + 1)

p_a = np.array([0.04, 0.25, 0.5, 0.75, 0.96])

# Binomial function
def binomial(n, k, p):
return comb(n, k) * (p ** k) * ((1 - p) ** (n - k))

# Constructing the array
f_a = np.zeros((len(k_a), len(p_a)))
for i in range(len(k_a)):
for j in range(len(p_a)):
f_ali, j] = binomial(n, k_alil, p_aljl)

# Plot

plt.figure()

colors = plt.cm.jet(np.linspace(0, 1, len(p_a)))

for j in range(len(p_a)):
plt.bar(k_a, f_al:, jl, color=colors[j], alpha=0.5, label=f'$p =
- {p_aljl}$"

plt.legend(loc='best', frameon=False, fontsize='medium')
plt.xlabel('Number of ones in sequence k')
plt.ylabel('Probability')

plt.x1im([0, 1001)

plt.show()

# Save the plot to pdf
plt.savefig('binomial-pdf.pdf', bbox_inches='tight')

3.6.2 Gaussian PDF

The Gaussian or normal random variable x has PDF

1 —(x — p)?
f)=—=ep =
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Although we’re not quite ready to understand these quantities in detail, it can be

shown that the parameters y and ¢ have the following meanings:
e 1 is the mean of x,
e o is the standard deviation of x, and
e o7 is the variance of x.
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Figure 3.8. PDF for Gaussian random variable x, mean p =0, and standard deviation

o=1/V2.

Consider the “bell-shaped” Gaussian PDF in figure 3.8. It is always symmetric.
The mean p is its central value and the standard deviation ¢ is directly related to
its width. We will continue to explore the Gaussian distribution in the following
lectures, especially in section 4.3.

3.7 Expectation & EIE

Recall that a random variable is a function X : Q — R that maps from =k
the sample space to the reals. Random variables are the arguments of
probability mass functions (PMFs) and probability density functions (PDFs).

The expected value (or expectation) of a random variable is akin to its “average
value” and depends on its PMF or PDF. The expected value of a random variable
X is denoted (X) or E[X]. There are two definitions of the expectation, one for a
discrete random variable, the other for a continuous random variable. Before we
define, them, however, it is useful to predefine the most fundamental property of a
random variable, its mean.

Definition 3.1
The mean of a random variable X is defined as

mX:E[X].

Let’s begin with a discrete random variable.
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