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3.6 Probability Density and Mass Functions LINK
9Z

Consider an experiment that measures a random variable.We can plot
the relative frequency of the measurand landing in different “bins”
(ranges of values). This is called a frequency distribution or a probability mass

function (PMF).

Figure 3.5. Plot of a probability mass function.

Consider, for instance, a probability mass function as plotted in figure 3.5, where
a frequency 08 can be interpreted as an estimate of the probability of the measurand
being in the 8th interval. The sum of the frequencies must be unity:

:∑
8=1

08 = 1

with : being the number of bins.
The frequency density distribution is similar to the frequency distribution, but

with 08 ↦→ 08/ΔG, where ΔG is the bin width.
If we let the bin width approach zero, we derive the probability density function

(PDF)

5 (G)= lim
:→∞
ΔG→0

:∑
9=1

0 9/ΔG.

We typically think of a probability density function 5 , like the one in figure 3.6 as a
function that can be integrated over to find the probability of the random variable
(measurand) being in an interval [0, 1]:

%(G ∈ [0, 1])=
ˆ 1

0

5 (")3".

https://math.ricopic.one/9z
https://math.ricopic.one/9z
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Of course,

%(G ∈ (−∞,∞))=
ˆ ∞
−∞

5 (")3"

= 1.

Figure 3.6. Plot of a probability density function.

We now consider a common PMF and a common PDF.

3.6.1 Binomial PMF

Consider a random binary sequence of length = such that each element is a random
0 or 1, generated independently, like

(1, 0, 1, 1, 0, · · · , 1, 1).
Let events {1} and {0} be mutually exclusive and exhaustive and %({1})= ?. The
probability of the sequence above occurring is

%((1, 0, 1, 1, 0, · · · , 1, 1))= ?(1− ?)??(1− ?) · · · ??.
There are = choose :, (

=

:

)
=

=!
:!(= − :)! ,

possible combinations of : ones for = bits. Therefore, the probability of any
combination of : ones in a series is

5 (:)=
(
=

:

)
?:(1− ?)=−: .

We call section 3.6.1 the binomial distribution PDF.

Example 3.7

Consider a field sensor that fails for a given measurement with probability ?.
Given = measurements, plot the binomial PMF as a function of : failed measure-
ments for a few different probabilities of failure ? ∈ [0.04, 0.25, 0.5, 0.75, 0.96].
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listing 3.1 shows Python code for constructing the PDFs plotted in figure 3.7.
Note that the symmetry is due to the fact that events {1} and {0} are mutually
exclusive and exhaustive.
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Figure 3.7. Binomial PDF for = = 100measurements and different values of %({1})= ?,
the probability of a measurement error. The plot is generated by the Python code of
??.
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Listing 3.1 Python code that generates the binomial PDF

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import comb

# Parameters
n = 100
k_a = np.arange(1, n + 1)
p_a = np.array([0.04, 0.25, 0.5, 0.75, 0.96])

# Binomial function
def binomial(n, k, p):

return comb(n, k) * (p ** k) * ((1 - p) ** (n - k))

# Constructing the array
f_a = np.zeros((len(k_a), len(p_a)))
for i in range(len(k_a)):

for j in range(len(p_a)):
f_a[i, j] = binomial(n, k_a[i], p_a[j])

# Plot
plt.figure()
colors = plt.cm.jet(np.linspace(0, 1, len(p_a)))
for j in range(len(p_a)):

plt.bar(k_a, f_a[:, j], color=colors[j], alpha=0.5, label=f'$p =
{p_a[j]}$')↩→

plt.legend(loc='best', frameon=False, fontsize='medium')
plt.xlabel('Number of ones in sequence k')
plt.ylabel('Probability')
plt.xlim([0, 100])
plt.show()

# Save the plot to pdf
plt.savefig('binomial-pdf.pdf', bbox_inches='tight')

3.6.2 Gaussian PDF

The Gaussian or normal random variable G has PDF

5 (G)= 1

�
√

2�
exp
−(G −�)2

2�2
.

Although we’re not quite ready to understand these quantities in detail, it can be
shown that the parameters � and � have the following meanings:

• � is themean of G,
• � is the standard deviation of G, and
• �2 is the variance of G.
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Figure 3.8. PDF for Gaussian random variable G, mean �= 0, and standard deviation
�= 1/

√
2.

Consider the “bell-shaped” Gaussian PDF in figure 3.8. It is always symmetric.
The mean � is its central value and the standard deviation � is directly related to
its width. We will continue to explore the Gaussian distribution in the following
lectures, especially in section 4.3.

3.7 Expectation LINK
JH

Recall that a random variable is a function - :Ω→R that maps from
the sample space to the reals. Random variables are the arguments of
probability mass functions (PMFs) and probability density functions (PDFs).
The expected value (or expectation) of a random variable is akin to its “average

value” and depends on its PMF or PDF. The expected value of a random variable
- is denoted 〈-〉 or E [-]. There are two definitions of the expectation, one for a
discrete random variable, the other for a continuous random variable. Before we
define, them, however, it is useful to predefine the most fundamental property of a
random variable, itsmean.

Definition 3.1

The mean of a random variable - is defined as

<- =E [-] .

Let’s begin with a discrete random variable.
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