
Probability 39

Other properties of variance include, for real constant 2,

Var [2]= 0

Var [- + 2]=Var [-]

Var [2-]= 22 Var [-] .
The standard deviation is defined as

�- =

√
�2
-
.

Although the variance is mathematically more convenient, the standard deviation
has the same physical units as -, so it is often the more physically meaningful
quantity. Due to its meaning as the width or spread of the probability distribution,
and its sharing of physical units, it is a convenient choice for error bars on plots of
a random variable.
The skewness Skew [-] is a normalized third central moment:

Skew [-]=
E
[
(- −�-)3

]
�3
-

.

Skewness is a measure of asymmetry of a random variable’s PDF or PMF. For a
symmetric PMF or PDF, such as the Gaussian PDF, Skew [-]= 0.
The kurtosis Kurt [-] is a normalized fourth central moment:

Kurt [-]=
E
[
(- −�-)4

]
�4
-

.

Kurtosis is ameasure of the tailedness of a randomvariable’s PDF or PMF. “Heavier”
tails yield higher kurtosis.
A Gaussian random variable has PDF with kurtosis 3. Given that for Gaussians

both skewness and kurtosis have nice values (0 and 3), we can think of skewness
and and kurtosis as measures of similarity to the Gaussian PDF.

3.9 Transforming Random Variables LINK
SR

TODO: describe the theory and formulae
For random variables - and . with PDFs 5- and 5. , and with

invertible transformation . = 6(-), we have the linear approximation

5.(H)=
1

|3H/3G | 5-(G)
����
G ↦→6−1(H)

. (3.10)

https://math.ricopic.one/sr
https://math.ricopic.one/sr

40 Chapter 3

Example 3.11

Suppose we are to probabilistically quantify a parachutist’s chances of landing
within a certain horizontal distance of a landing target, accounting for random
wind displacements. Develop a PDF for the random variable ', the landing
distance from the target.

Without much intuition, no data, or a very good physical model of the situation,
we are left to bootstrap a solution. A toehold can perhaps be found by narrowing
the problem to a drop of a fixed, relatively short distance, such as that shown in
figure 3.11.

Figure 3.11. A parachutist falling 10 m and being displaced by wind an amount
modeled by random variable -.

For each vertical drop of 10 m, we might expect a horizontal displacement of a
fewmeters. Without any information about average prevailing winds, we cannot
expect any particular direction to be most likely. It seems more likely that wind
gusts would displace the parachutist a small amount than a large amount, and
even less likely to displace a very large amount. These facts suggest a reasonable
model to start with is a Gaussian distribution with PDF

5-(G)=
1√

2��
exp
−(G −�)2

2�2
,

Probability 41

where �= 0mand �= 5m. This model could clearly be improvedwith some data
or a detailed analysis of the physics involved, but this seems to be a reasonable
place to begin.
From here, we can extrapolate. For one 10-m drop, the displacement random

variable is -. For two 10-m drops, the displacement random variable is 2-, and
so on. We conclude that for # drops of 10 m, the landing displacement random
variable ' is

'=#-.

Here we have assumed the parachutist lands after # drops of 10 m. Another
way of writing this is

'= ℎ(-)=#-.
The function ℎ transforms random variable - (with value G) to random variable
' with value (A).
We can apply equation (3.10) directly to find the PDF of ' as follows:

5.(H)=
1

|3A/3G | 5-(G)
����
G ↦→ℎ−1(A)

(3.11)

=
1
#
· 1√

2��
exp
−(A/# −�)2

2�2
. (3.12)

Letting �′=#� and �′=#�, we obtain

5'(A)=
1

√
2��′

exp
−(G −�′)2

2�′2
.

That is, ' also has a Gaussian PDF. We see that the linear transformation has
simply transformed the mean � and standard deviation � accordingly.
We observe that for greater # (higher jumps), the standard deviation is also

greater. This is an intuitive result. We now turn to Python for graphical and
simulation purposes.
Load the necessary packages:

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Define fixed parameters:

mu = 0.0 # Mean of the Gaussian distribution for the 10 m drop
sigma = 5.0 # Standard deviation of the Gaussian distribution for the 10 m drop

Define the 10 m drop Gaussian distribution 5-(G) symbolically

42 Chapter 3

x, r, N = sp.symbols('x, r, N', real=True)
f_X = 1/(sigma * sp.sqrt(2 * sp.pi)) * sp.exp(-(x - mu)**2 / (2 * sigma**2))
print(f_X)

0.1*sqrt(2)*exp(-0.02*x**2)/sqrt(pi)

Define the functional relationship between - and ', the horizontal distance
from the initial drop point

h_eq = sp.Eq(r, N * x)
h_sol = sp.solve(h_eq, r, dict=True)[0]
h_inv = sp.solve(h_eq, x, dict=True)[0]
dr_dx = sp.diff(h_sol[r], x)
print(dr_dx)

N

Define symbolically 5'(A), the probability density function for the horizontal
distance from the initial drop point:

f_R = 1/sp.Abs(dr_dx) * f_X.subs(h_inv)
print(f_R)

0.1*sqrt(2)*exp(-0.02*r**2/N**2)/(sqrt(pi)*Abs(N))

Lambdify the PDF for numerical evaluation

f_R_fun = sp.lambdify((r, N), f_R, 'numpy')

Plot the PDF 5'(A) for several values of # :
N_vals = np.array([600, 800, 1000])/10 # Drop steps of 10 m
r_vals = np.linspace(-1000, 1000, 1001)
fig, ax = plt.subplots()
for N_val in N_vals:

p_vals = f_R_fun(r_vals, N_val)
ax.plot(r_vals, p_vals, label=f'N = {N_val}')

ax.set_xlabel('r_f (m)')
ax.set_ylabel('$p(r_f)$')
ax.legend()
plt.draw()

Probability 43

−1000 −750 −500 −250 0 250 500 750 1000

A 5 (m)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

?
(A
5
)

N = 60.0

N = 80.0

N = 100.0

Figure 3.12. Probability density function 5'(A) for several values of #

Compute the probability of landing within ±500 m of the initial drop point:

r_min, r_max = -500, 500
p_landing = sp.integrate(f_R, (r, r_min, r_max))
print(p_landing)

Piecewise((0.707106781186548*sqrt(2)*Abs(N)*erf(70.7106781186548/Abs(N))/N,
N >= 0), (-
0.707106781186548*sqrt(2)*Abs(N)*erf(70.7106781186548/Abs(N))/N,
True))

↩→

↩→

↩→

Plot the probability of landing within ±500 m of the initial drop point as a
function of # :

N_vals = np.linspace(1, 1200, 1001)
p_landing_fun = sp.lambdify(N, p_landing, 'numpy')
p_landing_vals = np.zeros(N_vals.shape[0]) # Preallocate
for i, N_val in enumerate(N_vals):

p_landing_vals[i] = p_landing_fun(N_val) # Evaluate
fig, ax = plt.subplots()
ax.plot(N_vals * 10, p_landing_vals)
ax.set_xlabel('Drop height (m)')
ax.set_ylabel('$p(\pm 500 m)$')
plt.draw()

44 Chapter 3

0 2000 4000 6000 8000 10000 12000

Drop height (m)

0.2

0.4

0.6

0.8

1.0

?
(±

50
0<
)

Figure 3.13. Probability of landing within ±500 m of the initial drop point as a
function of #

Define a function to take one 10 m drop:

def take_drop(x_previous):
x_new = x_previous + np.random.normal(mu, sigma)
return x_new

Define a function to simulate a random walk:

def simulate_random_walk(N_sim):
y_sim = np.flip(np.arange(0, N_sim + 1)) * 10 # Heights
x_sim = np.zeros(N_sim + 1) # Preallocate
x_sim[0] = 0 # Initial drop point
for i in range(1, N_sim + 1):

x_sim[i] = take_drop(x_sim[i - 1])
return x_sim, y_sim

Simulate several random walks (drops) for various values of # :

N_vals = [60, 80, 100]
n_sim = 50 # Number of simulations
x_sims = [np.zeros((n_sim, N_val+1)) for N_val in N_vals] # Preallocate
y_sims = [np.zeros((n_sim, N_val+1)) for N_val in N_vals] # Preallocate
for i, N_val in enumerate(N_vals):

for j in range(n_sim):
x_sim, y_sim = simulate_random_walk(N_val)
x_sims[i][j] = x_sim
y_sims[i][j] = y_sim

Probability 45

Plot the random walks (drops) for several values of # :

fig, ax = plt.subplots()
for i, N_val in enumerate(N_vals):

for j in range(n_sim):
ax.plot(

x_sims[i][j], y_sims[i][j],
color=f'C{i}', alpha=[0.7, 0.5, 0.3][i]

)
ax.set_xlabel('Horizontal distance (m)')
ax.set_ylabel('Height (m)')
plt.show()

−100 −50 0 50 100

Horizontal distance (m)

0

200

400

600

800

1000

H
ei
g
h
t
(m

)

Figure 3.14. Random walks (drops) for several values of #

46 Chapter 3

3.10 Multivariate Probability and Correlation LINK
WQ

Thus far, we have considered probability density and mass functions
(PDFs and PMFs) of only one randomvariable. But, of course, oftenwe
measure multiple random variables -1 , -2 ,…, -= during a single event, meaning a
measurement consists of determining values G1 , G2 ,…, G= of these random variables.
We can consider an =-tuple of continuous random variables to form a sample

space Ω=R= on which a multivariate function 5 :R=→R, called the joint PDF
assigns a probability density to each outcome x ∈R= . The joint PDF must be greater
than or equal to zero for all x ∈R= , the multiple integral over Ωmust be unity, and
the multiple integral over a subset of the sample space � ⊂Ω is the probability of
the event �.
We can consider an =-tuple of discrete random variables to form a sample space
N=0 on which a multivariate function 5 :N=0→R, called the joint PMF assigns a
probability to each outcome x ∈N=0 . The joint PMF must be greater than or equal to
zero for all x ∈N=0 , the multiple sum over Ωmust be unity, and the multiple sum
over a subset of the sample space � ⊂Ω is the probability of the event �.

Example 3.12

Let’s visualize multivariate PDFs by plotting a bivariate gaussian using the
scipy.stats function multivariate_normal

We proceed in Python. First, load packages:

import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Define the mean and covariance matrix for a bivariate Gaussian distribution.

mu = [10, 20] # Mean
Sigma = [[1, 0], [0, 0.2]] # Covariance matrix

Generate grid points as input for the PDF.

x1_a = np.linspace(mu[0] - 5 * np.sqrt(Sigma[0][0]), mu[0] + 5 * np.sqrt(Sigma[0][0]), 30)
x2_a = np.linspace(mu[1] - 5 * np.sqrt(Sigma[1][1]), mu[1] + 5 * np.sqrt(Sigma[1][1]), 30)

Create a meshgrid.

X1, X2 = np.meshgrid(x1_a, x2_a)

Calculate the PDF.

pos = np.dstack((X1, X2))
rv = multivariate_normal(mu, Sigma)
f = rv.pdf(pos)

https://math.ricopic.one/wq
https://math.ricopic.one/wq

