
46 Chapter 3

3.10 Multivariate Probability and Correlation LINK
WQ

Thus far, we have considered probability density and mass functions
(PDFs and PMFs) of only one randomvariable. But, of course, oftenwe
measure multiple random variables -1 , -2 ,…, -= during a single event, meaning a
measurement consists of determining values G1 , G2 ,…, G= of these random variables.
We can consider an =-tuple of continuous random variables to form a sample

space Ω=R= on which a multivariate function 5 :R=→R, called the joint PDF
assigns a probability density to each outcome x ∈R= . The joint PDF must be greater
than or equal to zero for all x ∈R= , the multiple integral over Ωmust be unity, and
the multiple integral over a subset of the sample space � ⊂Ω is the probability of
the event �.
We can consider an =-tuple of discrete random variables to form a sample space
N=0 on which a multivariate function 5 :N=0→R, called the joint PMF assigns a
probability to each outcome x ∈N=0 . The joint PMF must be greater than or equal to
zero for all x ∈N=0 , the multiple sum over Ωmust be unity, and the multiple sum
over a subset of the sample space � ⊂Ω is the probability of the event �.

Example 3.12

Let’s visualize multivariate PDFs by plotting a bivariate gaussian using the
scipy.stats function multivariate_normal

We proceed in Python. First, load packages:

import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Define the mean and covariance matrix for a bivariate Gaussian distribution.

mu = [10, 20] # Mean
Sigma = [[1, 0], [0, 0.2]] # Covariance matrix

Generate grid points as input for the PDF.

x1_a = np.linspace(mu[0] - 5 * np.sqrt(Sigma[0][0]), mu[0] + 5 * np.sqrt(Sigma[0][0]), 30)
x2_a = np.linspace(mu[1] - 5 * np.sqrt(Sigma[1][1]), mu[1] + 5 * np.sqrt(Sigma[1][1]), 30)

Create a meshgrid.

X1, X2 = np.meshgrid(x1_a, x2_a)

Calculate the PDF.

pos = np.dstack((X1, X2))
rv = multivariate_normal(mu, Sigma)
f = rv.pdf(pos)

https://math.ricopic.one/wq
https://math.ricopic.one/wq

Probability 47

Plot the PDF.

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
p = ax.plot_surface(X1, X2, f, cmap='copper')
ax.set_xlabel(r'x_1', fontsize=12)
ax.set_ylabel(r'x_2', fontsize=12)
ax.set_zlabel(r'$f(x_1,x_2)$', fontsize=12)
plt.show()

5.0
7.5

10.0
12.5

15.0G1
18

19
20

21
22

G 2

0.0

0.1

0.2

0.3

5 (
G

1
, G

2)
Figure 3.15. Bivariate Gaussian PDF.

The plot shows the PDF of a bivariate Gaussian distribution. Pretty neat, right?

3.10.1 Marginal Probability

Themarginal PDF of a multivariate PDF is the PDF of some subspace ofΩ after one
or more variables have been “integrated out,” such that a fewer number of random
variables remain. Of course, these marginal PDFs must have the same properties of
any PDF, such as integrating to unity.

Example 3.13

Let’s demonstrate this by numerically integrating over G2 in the bivariate
Gaussian, above.

Continuing from where we left off, let’s integrate.

f1 = np.trapz(f.T, x2_a, axis=1) # Trapezoidal integration

Let’s plot the marginal PDF.

48 Chapter 3

fig, ax = plt.subplots()
ax.plot(x1_a, f1, linewidth=2)
ax.set_xlabel(r'x_1')
ax.set_ylabel(r'$g(x_1)=\int_{-\infty}^\infty f(x_1,x_2) d x_2$')
plt.show()

[<matplotlib.lines.Line2D at 0x1680f0bd0>]

Text(1, 0, 'x_1')

Text(0, 0.5, '$g(x_1)=\\int_{-\\infty}^\\infty f(x_1,x_2) d x_2$')

6 8 10 12 14
G1

0.0

0.1

0.2

0.3

0.4

6
(G

1)
=
´ ∞ −∞

5(
G

1
,G

2)
3
G

2

Figure 3.16. Marginal PDF of a bivariate Gaussian distribution.

We should probably verify that this integrates to one.

integral_value = np.trapz(f1, x1_a)
print(f'integral over x_1 = {integral_value:.7f}')

integral over x_1 = 0.9999986

Not bad.

Probability 49

3.10.2 Covariance

Very often, especially in machine learning applications, the question about two
random variables - and . is: how do they co-vary? That is what is their covariance,
defined as

Cov [-,.] ≡� ((- −�-)(. −�.))
=�(-.) −�-�. .

Note that when - =., the covariance is just the variance. When a covariance is
large and positive, it is an indication that the random variables are strongly correlated.
When it is large and negative, they are strongly anti-correlated. Zero covariancemeans
the variables are uncorrelated. In fact, correlation is defined as

Cor [-,.]= Cov [-,.]√
Var [-]Var [.]

.

This is essentially the covariance “normalized” to the interval [−1, 1].

3.10.2.1 Sample Covariance As with the other statistics we’ve considered,
covariance can be estimated from measurement. The estimate, called the sample

covariance @-. , of random variables - and . with sample size # is given by

@-. =
1

− 1

#∑
8=1

(G8 −-)(H8 −.).

3.10.2.2 Multivariate Covariance With = random variables -8 , one can compute
the covariance of each pair. It is common practice to define an = × = matrix of
covariances called the covariance matrix Σ such that each pair’s covariance

Cov
[
-8 , -9

]
appears in its row-column combination (making it symmetric), as shown below.

Σ=


Cov [-1 , -1] Cov [-1 , -2] · · · Cov [-1 , -=]
Cov [-2 , -1] Cov [-2 , -2] Cov [-2 , -=]

...
. . .

...

Cov [-= , -1] Cov [-= , -2] · · · Cov [-= , -=]


The multivariate sample covariance matrix & is the same as above, but with

sample covariances @-8-9 .
Both covariance matrices have correlation analogs.

50 Chapter 3

Example 3.14

Let’s use a dataset from the Scikit-Learn package with multivariate data on the
attributes of wine. Compute the sample covariance and correlation matrices. Plot
variables pairwise and color them with the corresponding correlation.

Load the necessary libraries.

import numpy as np
from sklearn.datasets import load_wine
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
import matplotlib.cm as cm

Load the dataset and print the feature names.

data = load_wine()
print(f"Features: {data.feature_names}")

Features: ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash',
'magnesium', 'total_phenols', 'flavanoids',
'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity',
'hue', 'od280/od315_of_diluted_wines', 'proline']

↩→

↩→

↩→

Select a list of features to analyze and select the corresponding data.

features = [
'alcohol', 'malic_acid', 'ash', 'magnesium',
'total_phenols', 'flavanoids'

]
X = data.data[

:, [data.feature_names.index(f) for f in features]
]

Compute the sample covariance and correlation matrices.

cov = np.cov(X.T) # Covariance matrix
cor = np.corrcoef(X.T) # Correlation matrix (normalized covariance)
print(f"Covariance matrix:\n{cov}")
print(f"Correlation matrix:\n{cor}")

Probability 51

Covariance matrix:
[[6.59062328e-01 8.56113090e-02 4.71151590e-02 3.13987812e+00

1.46887218e-01 1.92033222e-01]
[8.56113090e-02 1.24801540e+00 5.02770393e-02 -8.70779534e-01
-2.34337723e-01 -4.58630366e-01]

[4.71151590e-02 5.02770393e-02 7.52646353e-02 1.12293658e+00
2.21455913e-02 3.15347299e-02]

[3.13987812e+00 -8.70779534e-01 1.12293658e+00 2.03989335e+02
1.91646988e+00 2.79308703e+00]

[1.46887218e-01 -2.34337723e-01 2.21455913e-02 1.91646988e+00
3.91689535e-01 5.40470422e-01]

[1.92033222e-01 -4.58630366e-01 3.15347299e-02 2.79308703e+00
5.40470422e-01 9.97718673e-01]]

Correlation matrix:
[[1. 0.09439694 0.2115446 0.27079823 0.28910112

0.23681493]↩→

[0.09439694 1. 0.16404547 -0.0545751 -0.335167
-0.41100659]↩→

[0.2115446 0.16404547 1. 0.28658669 0.12897954
0.11507728]↩→

[0.27079823 -0.0545751 0.28658669 1. 0.21440123
0.19578377]↩→

[0.28910112 -0.335167 0.12897954 0.21440123 1.
0.8645635]↩→

[0.23681493 -0.41100659 0.11507728 0.19578377 0.8645635 1.
]]↩→

Plot the data pairings with color corresponding to the correlation matrix.

52 Chapter 3

fig, ax = plt.subplots(cor.shape[0], cor.shape[1], figsize=(10, 10))
norm = Normalize(vmin=-1, vmax=1)
cmap = cm.coolwarm
scatter = np.empty(cor.shape, dtype=object)
for i in range(cor.shape[0]):

for j in range(cor.shape[1]):
scatter[i, j] = ax[i, j].scatter(

X[:, i], X[:, j],
c=cor[i, j] * np.ones(X.shape[0]), cmap=cmap, norm=norm,
s=0.5 # Point size

)
if i == cor.shape[0] - 1:

ax[i, j].set_xlabel(
features[j].replace("_", " "), rotation=45, ha='right')

if j == 0:
ax[i, j].set_ylabel(

features[i].replace("_", " "), rotation=0, ha='right')
ax[i, j].set_xticks([])
ax[i, j].set_yticks([])

plt.tight_layout()
cbar = fig.colorbar(scatter[0, 0], ax=ax, orientation='horizontal')
plt.show()

Probability 53

alcohol

malic acid

ash

magnesium

total phenols

alc
ohol

flavanoids

malic
 ac

id ash

magnesi
um

total
phenols

flav
anoids

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.17. Pairwise scatter plot of the features with color corresponding to
correlation.

3.10.3 Conditional Probability and Dependence

Independent variables are uncorrelated. However, uncorrelated variables may or may not
be independent. Therefore, we cannot use correlation alone as a test for independence.
For instance, for random variables - and ., where - has some even distribution
and . =-2, clearly the variables are dependent. However, the are also uncorrelated
(due to symmetry).

54 Chapter 3

Example 3.15

Using a uniform distribution*(−1, 1), show that - and . are uncorrelated (but
dependent) with . =-2 with some sampling. We compute the correlation for
different sample sizes.

Load the necessary libraries.

import numpy as np
import matplotlib.pyplot as plt

Generate the data for G and H.

N_a = np.round(np.linspace(10, 500, 100)).astype(int) # Sample sizes
qc_a = np.full(N_a.shape, np.nan) # Correlation initialization
np.random.seed(6) # Seed for reproducibility
x_a = -1 + 2 * np.random.rand(max(N_a)) # Uniform random numbers
y_a = x_a ** 2 # H = G2

Calculate the cross-correlation.

for i in range(len(N_a)):
q = np.cov(x_a[:N_a[i]], y_a[:N_a[i]])
qc = np.corrcoef(x_a[:N_a[i]], y_a[:N_a[i]])
qc_a[i] = qc[0, 1] # "cross" correlation

Plot the absolute cross correlation as a function of sample size.

fig, ax = plt.subplots()
p, = ax.plot(N_a, np.abs(qc_a), linewidth=2)
ax.set_xlabel(r'Sample size N')
ax.set_ylabel(r'Absolute sample correlation')
ax.set_ylim(bottom=0)
plt.show()

Probability 55

0 100 200 300 400 500

Sample size #

0.00

0.05

0.10

0.15

0.20

0.25

A
b
so
lu
te
sa
m
p
le
co
rr
el
at
io
n

Figure 3.18. Correlation between G and H as a function of sample size.

The absolute values of the correlations are shown in the figure. Note that we
should probably average several such curves to estimate how the correlation
would drop off with # , but the single curve describes our understanding that
the correlation, in fact, approaches zero in the large-sample limit.

56 Chapter 3

3.11 Problems LINK
TS

Problem 3.1 LINKGRAIN Several physical processes can be modeled with a random
walk: a process of interatively changing a quantity by some random amount.
Infinitely many variations are possible, but common factors of variation include
probability distribution, step size, dimensionality (e.g. one-dimensional, two-
dimensional, etc.), and coordinate system. Graphical representations of these walks
can be beautiful. Develop a computer program that generates random walks and
corresponding graphics. Do it well and call it art because it is.

Problem 3.2 LINKFREE Consider the defective spring problem from example 3.4. One
way to improve the probability of a true positive test (i.e., the sensitivity) is to
add a second test for which a positive event is called �. Again assuming that the
sensitivity and specificity are equal for tests � and �, and that the sensitivity of
test � is %(�|�)= 0.995 what is the required sensitivity for test �? Clearly state any
assumptions.

https://math.ricopic.one/ts
https://math.ricopic.one/ts
https://math.ricopic.one/grain
https://math.ricopic.one/free

