
68 Chapter 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Folded time (s)

20

30

40

50

T
em

p
er
at
u
re
(C
)

population mean

sample mean

Figure 4.6. Sample means over a single period with error bars.

4.3 Confidence LINK
IU

One really ought to have it to give a lecture named it, but we’ll give it
a try anyway. Confidence is used in the common sense, although we
do endow it with a mathematical definition to scare business majors, who aren’t
actually impressed, but indifferent. Approximately: if, under some reasonable
assumptions (probabilistic model), we estimate the probability of some event to be
%%, we say we have %% confidence in it. I mean, business majors are all, “Supply
and demand? Let’s call that a ‘law,’ ” so I think we’re even.
So we’re back to computing probability from distributions—probability density

functions (PDFs) and probability mass functions (PMFs). Usually we care most
about estimating the mean of our distribution. Recall from the previous lecture
that when several samples are taken, each with its own mean, the mean is itself a
random variable—with a mean, of course. Meanception.
But the mean has a probability distribution of its own. The central limit theorem

has as one of its implications that, as the sample size # gets large, regardless of the
sample distributions, this distribution of means approaches the Gaussian distribution.
But sometimes I always worry I’m being lied to, so let’s check.

https://math.ricopic.one/iu
https://math.ricopic.one/iu
http://ricopic.one/resources/inception.gif
http://ricopic.one/resources/mind_blown.gif

Statistics 69

4.3.1 Checking the Central Limit Theorem

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

Generate Data Generate some data to test the central limit theorem {#generate-
some-data-to-test-the-central-limit-theorem h=“3y”}
Data can be generated by constructing an array using a (seeded for consistency)

random number generator. Let’s use a uniformly distributed PDF between 0 and 1.

N = 150 # Sample size (number of measurements per sample)
M = 120 # Number of samples
n = N * M # Total number of measurements
mu_pop = 0.5 # Because it's a uniform PDF between 0 and 1
np.random.seed(11) # Seed the random number generator
signal_a = np.random.rand(N, M) # Uniform PDF
#
Let's take a look at the data by plotting the first ten samples
(columns) versus index, as shown in the figure below

samples_to_plot = 10
fig, ax = plt.subplots()
for j in range(samples_to_plot):

ax.plot(signal_a[:, j], 'o-', markersize=3)
plt.xlabel('index')
plt.ylabel('measurement')
plt.draw()

70 Chapter 4

0 20 40 60 80 100 120 140

index

0.0

0.2

0.4

0.6

0.8

1.0

m
ea
su
re
m
en
t

Figure 4.7. Raw data with colors corresponding to samples.

This is something like what we might see for continuous measurement data. Now
make a histogram of each sample:

c = plt.cm.jet(np.linspace(0, 1, samples_to_plot)) # Color array
fig, ax = plt.subplots()
for j in range(samples_to_plot):

plt.hist(signal_a[:, j],
bins=30, # Number of bins
color=c[j],
alpha=0.3,
density=True) # For PMF

plt.xlim([-0.05, 1.05])
plt.xlabel('Measurement')
plt.ylabel('Probability')
plt.draw()

Statistics 71

0.0 0.2 0.4 0.6 0.8 1.0

Measurement

0.0

0.5

1.0

1.5

2.0

P
ro
b
ab
il
it
y

Figure 4.8. Histograms of the approximately uniform distribution of each sample
(color).

This isn’t a great plot, but it shows roughly that each sample is fairly uniformly
distributed.

Sample Statistics Now let’s check out the sample statistics. We want the sample
mean and standard deviation of each column. Let’s use the built-in functions mean
and std.
mu_a = np.mean(signal_a, axis=0) # Mean of each column
s_a = np.std(signal_a, axis=0) # Standard deviation of each column

Now we can compute the mean statistics, both the mean of the mean - and the
standard deviation of the mean B

-
, which we don’t strictly need for this part, but

we’re curious. We choose to use the direct estimate instead of the B-/
√
formula,

but they should be close.

mu_mu = np.mean(mu_a)
s_mu = np.std(mu_a)

The Truth about SampleMeans It’s the moment of truth. Let’s plot the histogram
of the sample means as follows:

72 Chapter 4

fig, ax = plt.subplots()
plt.hist(mu_a,

bins=30, # You can adjust the number of bins as needed
density=True) # For PMF

plt.xlabel('Measurement')
plt.ylabel('Probability')
plt.draw()

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58

Measurement

0

5

10

15

20

P
ro
b
ab
il
it
y

Figure 4.9. Histogram of the approximately normal distribution of the means.

This looks like a Gaussian distribution about the mean of means, so I guess the
central limit theorem is legit.

Gaussian and Probability We already know how to compute the probability % a
value of a random variable - lies in a certain interval from a PMF or PDF (the sum
or the integral, respectively). This means that, for sufficiently large sample size #
such that we can assume from the central limit theorem that the sample means G8
are normally distributed, the probability a sample mean value G8 is in a certain interval

is given by integrating the Gaussian PDF. The Gaussian PDF for random variable
. representing the sample means is

5 (H)= 1

�
√

2�
exp
−(H −�)2

2�2
.

where � is the population mean and � is the population standard deviation.
The integral of 5 over some interval is the probability a value will be in that

interval. Unfortunately, that integral is uncool. It gives rise to the definition of the
error function, which, for the Gaussian random variable ., is

Statistics 73

erf(H1)=
1
√
�

ˆ H1

−H1
4−C

2
3C.

This expresses the probability a sample mean being in the interval [−H1 , H1] if . has
mean 0 and variance 1/2.
Python has the error function in the scipy.special package. Let’s plot the error

function:

from scipy.special import erf
y_a = np.linspace(0, 3, 100)
fig, ax = plt.subplots()
ax.plot(y_a, erf(y_a), linewidth=2)
plt.grid(True)
plt.xlabel(r'Interval bound y_b')
plt.ylabel(r'Error function $\text{erf}(y_b)$')
plt.draw()

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Interval bound H1

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r
fu
n
ct
io
n
er
f(H

1
)

Figure 4.10. Error function for Gaussian random variable.

We could deal directly with the error function, but most people don’t and we’re
weird enough, as it is. Instead, people use theGaussian cumulative distribution

function (CDF) Φ :R→R, which is defined as

Φ(I)= 1
2

(
1+ erf

(
I√
2

))
and which expresses the probability of a Gaussian random variable / with mean 0
and standard deviation 1 taking on a value in the interval (−∞, I]. The Gaussian
CDF and PDF are plotted below.

74 Chapter 4

from scipy.stats import norm
z_a = np.linspace(-3, 3, 300)
threshold = 1.5
a_pdf = lambda z: (z < threshold) * norm.pdf(z, 0, 1)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 12)) # Two subplots
ax1.fill_between(z_a, a_pdf(z_a), color=[.8, .8, .8])
ax1.plot(z_a, norm.pdf(z_a, 0, 1), linewidth=2)
ax1.grid(True)
ax1.set_xlabel(r'z')
ax1.set_ylabel(r'Gaussian PDF $f(z)$')
ax1.text(1.5, norm.pdf(1.5, 0, 1) + .01, r'z_b')
ax1.legend([r'$\Phi(z_b)$', r'$f(z)$'])
ax2.plot(z_a, 1/2 * (1 + erf(z_a / np.sqrt(2))), linewidth=2)
ax2.grid(True)
ax2.set_xlabel(r'interval bound z_b')
ax2.set_ylabel(r'Gaussian CDF $\Phi(z_b)$')
plt.show()

−3 −2 −1 0 1 2 3
I

0.0

0.2

0.4

G
au
ss
ia
n
P
D
F
5(
I
)

I1

Φ(I1)
5 (I)

−3 −2 −1 0 1 2 3

interval bound I1

0.0

0.5

1.0

G
au
ss
ia
n
C
D
F
Φ
(I
1
)

Figure 4.11. Gaussian PDF and CDF for I-scores.

Values can be taken directly from the graph, but it’s more accurate to use the
table of values in appendix A.1.
That’s great and all, but occasionally (always)we haveGaussian randomvariables

with nonzero means and nonunity standard deviations. It turns out we can shift
any Gaussian random variable by its mean and scale it by its standard deviation to
make it have zero mean and standard deviation. We can then use Φ and interpret
the results as being relative to the mean and standard deviation, using phrases like
“the probability it is within two standard deviations of its mean.” The transformed

Statistics 75

random variable / and its values I are sometimes called the z-score. For a particular
value G of a random variable -, we can compute its I-score (or value I of random
variable /) with the formula

I =
G −�-
�-

and compute the probability of - taking on a value within the interval, say,
G ∈ [G1− , G1+] from the table. (Sample statistics - and (- are appropriate when
population statistics are unknown.)
For instance, compute the probability a Gaussian random variable - with �- = 5

and �- = 2.34 takes on a value within the interval G ∈ [3, 6].
1. Compute the I-score of each endpoint of the interval:

I3 =
3−�-
�-

≈−0.85

I6 =
6−�-
�-

≈ 0.43.

2. Look up the CDF values for I3 and I6, which are Φ(I3)= 0.1977 and Φ(I6)=
0.6664. 3. The CDF values correspond to the probabilities G < 3 and G < 6.
Therefore, to find the probability G lies in that interval, we subtract the lower
bound probability:

%(G ∈ [3, 6])=%(G < 6) −%(G < 3)
=Φ(6) −Φ(3)
≈ 0.6664− 0.1977

≈ 0.4689.

So there is a 46.89 percent probability, and therefore we have 46.89 percent
confidence, that G ∈ [3, 6].

Often we want to go the other way, estimating the symmetric interval [G1− , G1+]
for which there is a given probability. In this case, we first look up the I-score
corresponding to a certain probability. For concreteness, given the same population
statistics above, let’s find the symmetric interval [G1− , G1+] over which we have 90
percent confidence. From the table, we want two, symmetric I-scores that have
CDF-value difference 0.9. Or, in maths,

Φ(I1+) −Φ(I1−)= 0.9 and I1+ =−I1−.
Due to the latter relation and the additional fact that the Gaussian CDF has
antisymmetry,

Φ(I1+) +Φ(I1−)= 1.

76 Chapter 4

Adding the two Φ equations, we get

Φ(I1+)= 1.9/2
= 0.95

and Φ(I1−)= 0.05. From the table, these correspond (with a linear interpolation) to
I1 = I1+ =−I1− ≈ 1.645. All that remains is to solve the I-score formula for G:

G =�- + I�- .
From this,

G1+ =�- + I1+�- ≈ 8.849

G1− =�- + I1−�- ≈ 1.151.

and - has a 90 percent confidence interval [1.151, 8.849].

Example 4.3

Consider the data set generated above. What is our 95% confidence interval in
our estimate of the mean?

Assuming we have a sufficiently large data set, the distribution of means is
approximately Gaussian. Following the same logic as above, we need I-score
that gives an upper CDF value of (1+ 0.95)/2= 0.975. From the table, we obtain
the I1 = I1+ =−I1−, below.
z_b = 1.96

Now we can estimate the mean using our sample and mean statistics,

- =- ± I1(- . (4.1)

mu_x_95 = mu_mu + np.array([-z_b,z_b])*s_mu

[0.4526 0.5449]

This is our 95 percent confidence interval in our estimate of the mean.

Statistics 77

4.4 Student Confidence LINK
IC

The central limit theorem tells us that, for large sample size # , the
distribution of the means is Gaussian. However, for small sample
size, the Gaussian isn’t as good of an estimate. Student’s t-distribution is superior
for lower sample size and equivalent at higher sample size. Technically, if the
population standard deviation �- is known, even for low sample size we should
use the Gaussian distribution. However, this rarely arises in practice, so we can
usually get away with an “always t” approach.
Away that the t-distribution accounts for low-# is by having an entirely different

distribution for each # (seems a bit of a cheat, to me). Actually, instead of # , it uses
the degrees of freedom �, which is # minus the number of parameters required to
compute the statistic. Since the standard deviation requires only the mean, for most
of our cases, �=# − 1.
As with the Gaussian distribution, the t-distribution’s integral is difficult to

calculate. Typically, we will use a t-table, such as the one given in appendix A.2.
There are three points of note.

1. Since we are primarily concernedwith going from probability/confidence val-
ues (e.g. %% probability/confidence) to intervals, typically there is a column
for each probability.

2. The extra parameter � takes over one of the dimensions of the table because
three-dimensional tables are illegal.

3. Many of these tables are “two-sided,” meaning their t-scores and probabilities
assume you want the symmetric probability about the mean over the interval
[−C1 , C1], where C1 is your t-score bound.

Consider the following example.

Example 4.4

Write a Python script to generate a data set with 200 samples and sample sizes
∈ {10, 20, 100} using any old distribution. Compare the distribution of the
means for the different # . Use the sample distributions and a t-table to compute
99% confidence intervals.

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt

Generate the data set.

https://math.ricopic.one/ic
https://math.ricopic.one/ic

