
80 Chapter 4

4.5 Regression LINK
2L

Suppose we have a sample with two measurands: (1) the force �
through a spring and (2) its displacement - (not from equilibrium).
We would like to determine an analytic function that relates the variables, perhaps
for prediction of the force given another displacement.
There is some variation in the measurement. Let’s say the following is the sample.

X_a = 1e-3 * np.array(
[10, 21, 30, 41, 49, 50, 61, 71, 80, 92, 100]

) # m
F_a = np.array(

[50.1, 50.4, 53.2, 55.9, 57.2, 59.9, 61.0, 63.9, 67.0, 67.9, 70.3]
) # N

Let’s take a look at the data.

fig, ax = plt.subplots()
p = ax.plot(X_a * 1e3, F_a, '.b', markersize=15)
ax.set_xlabel(r'X (mm)')
ax.set_ylabel(r'F (N)')
ax.set_xlim([0, np.max(X_a * 1e3)])
ax.grid(True)
plt.draw()

0 20 40 60 80 100

- (mm)

50

55

60

65

70

�
(N
)

Figure 4.13. Force � as a function of displacement -.

How might we find an analytic function that agrees with the data? Broadly, our
strategy will be to assume a general form of a function and use the data to set

https://math.ricopic.one/2l
https://math.ricopic.one/2l

Statistics 81

the parameters in the function such that the difference between the data and the
function is minimal.
Let H be the analytic function that we would like to fit to the data. Let H8 denote

the value of H(G8), where G8 is the 8th value of the random variable - from the
sample. Then we want to minimize the differences between the force measurements
�8 and H8 .
From calculus, recall that we can minimize a function by differentiating it and

solving for the zero-crossings (which correspond to local maxima or minima).
First,we need such a function tominimize. Perhaps the simplest, effective function

� is constructed by squaring and summing the differences we want to minimize,
for sample size # :

�(G8)=
#∑
8=1

(�8 − H8)2

(recall that H8 = H(G8), which makes � a function of G).
Now the form of H must be chosen. We consider only <th-order polynomial

functions H, but others can be used in a similar manner:

H(G)= 00 + 01G + 02G
2 + · · · + 0<G< .

If we treat � as a function of the polynomial coefficients 0 9 , i.e.

�(00 , 01 , · · · , 0<),
and minimize � for each value of G8 , we must take the partial derivatives of � with
respect to each 0 9 and set each equal to zero:

%�

%00
= 0,

%�

%01
= 0, · · · , %�

%0<
= 0.

This gives us # equations and < + 1 unknowns 0 9 . Writing the system in matrix
form,

1 G1 G2
1 · · · G<1

1 G2 G2
2 · · · G<2

1 G3 G2
3 · · · G<3

...
...

...
. . .

...

1 G# G2
#
· · · G<

#

︸ ︷︷ ︸
�#×(<+1)

00

01

02
...

0<

︸︷︷︸
a(<+1)×1

=

�1

�2

�3
...

�#

︸︷︷︸
b#×1

.

Typically # >< and this is an overdetermined system. Therefore, we usually can’t
solve by taking �−1 because � doesn’t have an inverse!
Instead, we either find theMoore-Penrose pseudo-inverse�† and have a =�†b as the

solution, which is inefficient (even with NumPy’s linalg.pinv() function)—or we

82 Chapter 4

can approximate b with an algorithm such as that used in the least-squaresmethod,
which has Numpy function linalg.lstsq(). We’ll use the latter method.

Example 4.5

Use Numpy to find the least-squares polynomial fit for the sample. There’s the
sometimes-difficult question, “What order should we fit?” Let’s try out several
and see what the squared-differences function � gives.

Begin by writing a function that takes the sample data and the order of the
polynomial fit and returns the coefficients of the polynomial.

def poly_fit(X, F, order):
A = np.vander(X, order + 1, increasing=True) # Vandermonde matrix

This is the matrix A in the system of equations
return np.linalg.lstsq(A, F, rcond=None)[0] # Coefficients

Fit the data with polynomials of orders 1, 3, 5, 7, and 9.

orders = [1, 3, 5, 7, 9]
coefficients = [poly_fit(X_a, F_a, order) for order in orders]

Now we can plot the data and the fitted polynomials.

fig, ax = plt.subplots()
p = ax.plot(X_a * 1e3, F_a, '.b', markersize=15)
x = np.linspace(np.min(X_a), np.max(X_a), 100)
for i, order in enumerate(orders):

y = np.polyval(coefficients[i][::-1], x)
ax.plot(x * 1e3, y, label=f'Order {order}')

ax.set_xlabel(r'X (mm)')
ax.set_ylabel(r'F (N)')
ax.legend()
plt.draw()

Statistics 83

20 40 60 80 100

- (mm)

50

55

60

65

70

�
(N
)

Order 1

Order 3

Order 5

Order 7

Order 9

Figure 4.14. Data and fitted polynomials of different orders.

The plot shows the data points and the fitted polynomials of different orders.
The higher-order polynomials seem to fit the data better, but they may be over-
fitting. We can quantify the goodness of fit by calculating the sum of squared
differences � for each order.

D = []
for i, order in enumerate(orders):

y = np.polyval(coefficients[i][::-1], X_a)
D.append(np.sum((F_a - y) ** 2))

Let’s plot the sum of squared differences as a function of the order of the
polynomial.

fig, ax = plt.subplots()
p = ax.plot(orders, D, '.-b')
ax.set_xlabel('Order of polynomial')
ax.set_ylabel(r'$D(a_0,a_1,\cdots,a_m)$')
ax.set_xticks(orders)
plt.show()

84 Chapter 4

1 3 5 7 9

Order of polynomial

3

4

5

6

7

8

�
(0

0
,0

1
,·
··
,0
<
)

Figure 4.15. Sum of squared differences as a function of polynomial order.

The plot shows that the sum of squared differences decreases with the order
of the polynomial. However, the decrease is less pronounced for higher-order
polynomials. This suggests that the higher-order polynomials are overfitting
the data. The optimal order of the polynomial is the one that gives the best fit
without overfitting.

Statistics 85

4.6 Problems LINK
L5

Problem 4.1 LINKBREW You need to know the duration of time a certain stage of a
brewing process takes. You set up an automated test environment that repeats the
test 100 times, recorded in the following JSON1 data file: https://math.ricopic.one/bt.
Perform the following analysis.
a. Download and parse the JSON file (it contains a single array).
b. Estimate the duration of the process from the sample.
c. Choose and justify an assumed probability density function for the random

variable duration.
d. Use this PDF model to compute a 99 percent confidence interval for your

duration estimate.
e. Compute your duration confidence interval for the range of confidence

values [85, 99.99] percent.2
f. Plot the confidence intervals over the range of confidence in said intervals.

Problem 4.2 LINKLABORITORIUM Use linear regression techniques to find the values
of 0, 1, 2, and 3, in a cubic function of the form,

5 (G)= 0G3 + 1G2 + 2G + 3,
using the data below.

G 5 (G)
-2.0 -4.7
-1.5 -1.9
-1.0 1.5
-0.5 1.5
0.0 1.4
0.6 0.3
1.1 -1.5
1.6 0.0
2.1 0.6
2.6 4.2

1. JSON is a simple and common programming language-independent data format. For parsing it with
Matlab, see jsondecode here: https://math.ricopic.one/75. For parsing it with Python, see the module
json here: https://math.ricopic.one/jb.
2. Consider using a I- or C-score inverse CDF lookup function like t.ppf from scipy.stats.

https://math.ricopic.one/l5
https://math.ricopic.one/l5
https://math.ricopic.one/brew
https://math.ricopic.one/bt
https://math.ricopic.one/laboritorium
https://math.ricopic.one/75
https://math.ricopic.one/jb

