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an =-dimensional vector space isomorphic to R= . As we know from linear algebra,
any vector v ∈R= can be expressed in any number of bases. That is, the vector v is
a basis-free object with multiple basis representations. The components and basis
vectors of a vector change with basis changes, but the vector itself is invariant.
A coordinate system is in fact just a basis. We are most familiar, of course, with
Cartesian coordinates, which is the specific orthonormal basis b for R= :

b1 =


1
0
...

0


, b2 =


0
1
...

0


, · · · , b= =


0
0
...

1


.

Manifolds are spaces that appear locally as R= , but can be globally rather different
and can describe non-euclidean geometry wherein euclidean geometry’s parallel
postulate is invalid. Calculus on manifolds is the focus of differential geometry, a
subset of which we can consider our current study. A motivation for further study
of differential geometry is that it is very convenient when dealing with advanced
applications of mechanics, such as rigid-body mechanics of robots and vehicles. A
very nice mathematical introduction is given by (Lee 2012) and (Bullo and Lewis
2005) give a compact presentation in the context of robotics.
Vector fields have several important properties of interest we’ll explore in this

chapter. Our goal is to gain an intuition of these properties and be able to perform
basic calculation.

5.1 Divergence, Surface Integrals, and Flux

5.1.1 Flux and Surface Integrals LINK
1L

Consider a surface (. Let r(D, E)= [G(D, E), H(D, E), I(D, E)] be a para-
metric position vector on a Euclidean vector space R3. Furthermore,
let L :R3→R3 be a vector-valued function of r and let n be a unit-normal vector on
a surface (. The surface integral ¨

(

L · n d( (5.1)

which integrates the normal of L over the surface. We call this quantity the flux
of L out of the surface (. This terminology comes from fluid flow, for which the
flux is the mass flow rate out of (. In general, the flux is a measure of a quantity
(or field) passing through a surface. For more on computing surface integrals, see
Schey (2005; pp. 21-30) and Kreyszig (2011; § 10.6).

https://math.ricopic.one/1l
https://math.ricopic.one/1l
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5.1.2 Continuity

Consider the flux out of a surface ( that encloses a volume Δ+ , divided by that
volume:

1
Δ+

¨

(

L · n d(. (5.2)

This gives a measure of flux per unit volume for a volume of space. Consider its
physical meaning when we interpret this as fluid flow: all fluid that enters the
volume is negative flux and all that leaves is positive. If physical conditions are
such that we expect no fluid to enter or exit the volume via what is called a source
or a sink, and if we assume the density of the fluid is uniform (this is called an
incompressible fluid), then all the fluid that enters the volume must exit and we
get

1
Δ+

¨

(

L · n d(= 0. (5.3)

This is called a continuity equation, although typically this name is given to
equations of the form in the next section. This equation is one of the governing
equations in continuum mechanics.

5.1.3 Divergence

Let’s take the flux-per-volume as the volume Δ+→ 0 we obtain the following.

Equation 5.4 divergence: integral form

lim
Δ+→0

1
Δ+

¨

(

L · n d(.

This is called the divergence of L and is defined at each point in R3 by taking the
volume to zero about it. It is given the shorthand div L .
What interpretation can we give this quantity? It is a measure of the vector field’s

flux outward through a surface containing an infinitesimal volume. When we
consider a fluid, a positive divergence is a local decrease in density and a negative
divergence is a density increase. If the fluid is incompressible and has no sources or
sinks, we can write the continuity equation

div L = 0. (5.5)
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In the Cartesian basis, it can be shown that the divergence is easily computed
from the field

L = �G î + �H ĵ + �I k̂ (5.6)

as follows.

Equation 5.7 divergence: differential form

div L = %G�G + %H�H + %I�I

5.1.4 Exploring Divergence

Divergence is perhaps best explored by considering it for a vector field in R2. Such
a field L = �G î + �H ĵ can be represented as a “quiver” plot. If we overlay the quiver
plot over a “color density” plot representing div L , we can increase our intuition
about the divergence.
First, load some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify

Now we define some symbolic variables and functions.

x = sp.Symbol('x', real=True)
y = sp.Symbol('y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)

Rather than repeat code, let’s write a single function quiver_plotter_2D() to
make several of these plots.

def quiver_plotter_2D(
field={},
grid_width=3, grid_decimate_x=8, grid_decimate_y=8,
norm=Normalize(), density_operation='div',
print_density=True):

x, y = sp.symbols('x y', real=True)
F_x, F_y = sp.Function('F_x')(x, y), sp.Function('F_y')(x, y)
field_sub = field
# Calculate density
den = F_x.diff(x) + F_y.diff(y) if density_operation == 'div' else None
if den is None:
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raise ValueError(f'Unknown density operation: {density_operation}')
den_simp = den.subs(field_sub).doit().simplify()
if den_simp.is_constant():

print('Warning: density operator is constant (no density plot)')
if print_density:

print(f'The {density_operation} is:')
print(den_simp)

# Lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = sp.lambdify((x, y), F_x.subs(field_sub), 'numpy')
F_y_fun = sp.lambdify((x, y), F_y.subs(field_sub), 'numpy')
if F_x_sub.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y) * np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y) * np.ones(x.shape)

if not den_simp.is_constant():
den_fun = sp.lambdify((x, y), den_simp, 'numpy')

# Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
# Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not den_simp.is_constant():

den_num = den_fun(X, Y)
# Plot
fig, ax = plt.subplots()
if not den_simp.is_constant():

cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()

dx, dy = grid_decimate_y, grid_decimate_x
plt.quiver(X[::dx, ::dy], Y[::dx, ::dy], F_x_num[::dx, ::dy],

F_y_num[::dx, ::dy], units='xy', scale=10)
plt.title(fr'$F(x, y) = \left[{sp.latex(F_x.subs(field_sub))},' +

fr'{sp.latex(F_y.subs(field_sub))}\right]$')
return fig, ax

Let’s inspect several cases.

fig, ax = quiver_plotter_2D(field={F_x: x**2, F_y: y**2})
plt.draw()
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Figure 5.1. Quiver plot of �(G, H)=
[
G2 , H2]

fig, ax = quiver_plotter_2D(field={F_x: x*y, F_y: x*y})
plt.draw()
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Figure 5.2. Quiver plot of �(G, H)= [GH, GH]

fig, ax = quiver_plotter_2D(field={F_x: x**2 + y**2, F_y: x**2 + y**2})
plt.draw()
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Figure 5.3. Quiver plot of �(G, H)=
[
G2 + H2 , G2 + H2]

fig, ax = quiver_plotter_2D(
field={F_x: x**2/sp.sqrt(x**2+y**2), F_y: y**2/sp.sqrt(x**2+y**2)},
norm=SymLogNorm(linthresh=.3, linscale=.3)

)
plt.show()

3 2 1 0 1 2 3
3

2

1

0

1

2

3
F(x, y) =

[
x2√
x2 + y2

,
y2√
x2 + y2

]

100

10 1010 1

100

Figure 5.4. Quiver plot of �(G, H)=
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5.2 Curl, Line Integrals, and Circulation

5.2.1 Line Integrals LINK
YK

Consider a curve � in a Euclidean vector space R3. Let r(C)=
[G(C), H(C), I(C)] be a parametric representation of �. Furthermore, let
L :R3→R3 be a vector-valued function of r and let r′(C) be the tangent vector. The
line integral is ˆ

�

L(r(C)) · r′(C) dC (5.8)

which integrates L along the curve. For more on computing line integrals, see (Schey
2005; pp. 63-74) and (Kreyszig 2011; § 10.1 and 10.2).
If L is a force being applied to an object moving along the curve �, the line integral

is thework done by the force. More generally, the line integral integrates L along
the tangent of �.

5.2.2 Circulation

Consider the line integral over a closed curve �, denoted by˛

�

L(r(C)) · r′(C) dC. (5.9)

We call this quantity the circulation of L around �.
For certain vector-valued functions L , the circulation is zero for every curve. In

these cases (static electric fields, for instance), this is sometimes called the the law
of circulation.

5.2.3 Curl

Consider the division of the circulation around a curve in R3 by the surface area it
encloses Δ(,

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.10)

In a manner analogous to the operation that gaves us the divergence, let’s consider
shrinking this curve to a point and the surface area to zero,

lim
Δ(→0

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.11)

We call this quantity the “scalar” curl of L at each point in R3 in the direction normal

to Δ( as it shrinks to zero. Taking three (or = for R=) “scalar” curls in indepedent

https://math.ricopic.one/yk
https://math.ricopic.one/yk

