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5.2 Curl, Line Integrals, and Circulation

5.2.1 Line Integrals LINK
YK

Consider a curve � in a Euclidean vector space R3. Let r(C)=
[G(C), H(C), I(C)] be a parametric representation of �. Furthermore, let
L :R3→R3 be a vector-valued function of r and let r′(C) be the tangent vector. The
line integral is ˆ

�

L(r(C)) · r′(C) dC (5.8)

which integrates L along the curve. For more on computing line integrals, see (Schey
2005; pp. 63-74) and (Kreyszig 2011; § 10.1 and 10.2).
If L is a force being applied to an object moving along the curve �, the line integral

is thework done by the force. More generally, the line integral integrates L along
the tangent of �.

5.2.2 Circulation

Consider the line integral over a closed curve �, denoted by˛

�

L(r(C)) · r′(C) dC. (5.9)

We call this quantity the circulation of L around �.
For certain vector-valued functions L , the circulation is zero for every curve. In

these cases (static electric fields, for instance), this is sometimes called the the law
of circulation.

5.2.3 Curl

Consider the division of the circulation around a curve in R3 by the surface area it
encloses Δ(,

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.10)

In a manner analogous to the operation that gaves us the divergence, let’s consider
shrinking this curve to a point and the surface area to zero,

lim
Δ(→0

1
Δ(

˛

�

L(r(C)) · r′(C) dC. (5.11)

We call this quantity the “scalar” curl of L at each point in R3 in the direction normal

to Δ( as it shrinks to zero. Taking three (or = for R=) “scalar” curls in indepedent
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normal directions (enough to span the vector space), we obtain the curl proper,
which is a vector-valued function curl :R3→R3.
The curl is coordinate-independent. In cartesian coordinates, it can be shown to

be equivalent to the following.

Equation 5.12 curl: differential form, cartesian coordinates

curl L =
[
%H�I − %I�H %I�G − %G�I %G�H − %H�G

]>

But what does the curl of L represent? It quantifies the local rotation of L about
each point. If L represents a fluid’s velocity, curl L is the local rotation of the fluid
about each point and it is called the vorticity.

5.2.4 Zero Curl, Circulation, and Path Independence

5.2.4.1 Circulation It can be shown that if the circulation of L on all curves is zero,
then in each direction n and at every point curl L = 0 (i.e. n · curl L = 0). Conversely,
for curl L = 0 in a simply connected region2, L has zero circulation.
Succinctly, informally, and without the requisite qualifiers above,

zero circulation⇒ zero curl (5.13)

zero curl + simply connected region⇒ zero circulation. (5.14)

5.2.4.2 Path Independence It can be shown that if the path integral of L on
all curves between any two points is path-independent, then in each direction n
and at every point curl L = 0 (i.e. n · curl L = 0). Conversely, for curl L = 0 in a simply
connected region, all line integrals are independent of path.
Succinctly, informally, and without the requisite qualifiers above,

path independence⇒ zero curl (5.15)

zero curl + simply connected region⇒path independence. (5.16)

5.2.4.3 And How They Relate It is also true that

path independence⇔ zero circulation. (5.17)

So, putting it all together, we get figure 5.5.

2. A region is simply connected if every curve in it can shrink to a point without leaving the region. An
example of a region that is not simply connected is the surface of a toroid.
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zero curl
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connectedness and

Figure 5.5. An implication graph relating zero curl, zero circulation, path independence,
and connectedness. Blue edges represent implication (0 implies 1) and black edges
represent logical conjunctions.

5.2.5 Exploring Curl

Curl is perhaps best explored by considering it for a vector field in R2. Such a field
in cartesian coordinates L = �G î + �H ĵ has curl

curl L =
[
%H0− %I�H %I�G − %G0 %G�H − %H�G

]>
=
[
0− 0 0− 0 %G�H − %H�G

]>
=
[
0 0 %G�H − %H�G

]>
. (5.18)

That is, curl L = (%G�H − %H�G)k̂ and the only nonzero component is normal to the
GH-plane. If we overlay a quiver plot of L over a “color density” plot representing
the k̂-component of curl L , we can increase our intuition about the curl. First, load
some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *

Now we define some symbolic variables and functions.

x = sp.Symbol('x', real=True)
y = sp.Symbol('y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)

We use a variation of the quiver_plotter_2D() from above to make several of
these plots.
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def quiver_plotter_2D(
field={F_x: x*y, F_y: x*y},
grid_width=3,
grid_decimate_x=8,
grid_decimate_y=8,
norm=Normalize(),
density_operation='div',
print_density=True,

):
# Define symbolics
x, y = sp.symbols('x y', real=True)
F_x = sp.Function('F_x')(x, y)
F_y = sp.Function('F_y')(x, y)
field_sub = field
# Compute density
if density_operation == 'div':

den = F_x.diff(x) + F_y.diff(y)
elif density_operation == 'curl':

den = F_y.diff(x) - F_x.diff(y) # in the k direction
else:

raise ValueError('div and curl are the only density operators')
den_simp = den.subs(field_sub).doit().simplify()
if den_simp.is_constant():

print('Warning: density operator is constant (no density plot)')
if print_density:

print(f'The {density_operation} is: {den_simp}')
# Lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = sp.lambdify((x, y),F_x.subs(field_sub), 'numpy')
F_y_fun = sp.lambdify((x, y), F_y.subs(field_sub), 'numpy')
if F_x_sub.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y)*np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y)*np.ones(x.shape)

if not den_simp.is_constant():
den_fun = sp.lambdify((x, y), den_simp,'numpy')

# Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
# Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not den_simp.is_constant():

den_num = den_fun(X, Y)
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# Plot
fig, ax = plt.subplots()
if not den_simp.is_constant():
cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()

dx = grid_decimate_y
dy = grid_decimate_x
plt.quiver(
X[::dx,::dy],Y[::dx,::dy],
F_x_num[::dx,::dy], F_y_num[::dx,::dy],
units='xy', scale=10)

plt.title(fr'$F(x, y) = \left[ {sp.latex(F_x.subs(field_sub))},' + \
fr'{sp.latex(F_y.subs(field_sub))} \right]$')

return fig, ax

Let’s inspect several cases.

fig, ax = quiver_plotter_2D(
field={F_x: 0, F_y: sp.cos(2*sp.pi*x)}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=10, grid_width=1

)
plt.draw()
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Figure 5.6. Quiver plot of �(G, H)= [0, cos(2�G)]
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fig, ax = quiver_plotter_2D(
field={F_x: 0, F_y: x**2}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=20,

)
plt.draw()
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Figure 5.7. Quiver plot of �(G, H)=
[
0, G2]

fig, ax = quiver_plotter_2D(
field={F_x: y**2, F_y: x**2}, density_operation='curl',
grid_decimate_x=2, grid_decimate_y=20,

)
plt.draw()
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Figure 5.8. Quiver plot of �(G, H)=
[
H2 , G2]

fig, ax = quiver_plotter_2D(
field={F_x: -y, F_y: x}, density_operation='curl',
grid_decimate_x=6, grid_decimate_y=6,

)
plt.show()
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Figure 5.9. Quiver plot of �(G, H)= [−H, G]
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5.3 Gradient

5.3.1 Gradient LINK
4J

The gradient grad of a scalar-valued function 5 :R3→R is a vector
field L :R3→R3; that is, grad 5 is a vector-valued function on R3. The
gradient’s local direction andmagnitude are those of the local maximum rate of
increase of 5 . This makes it useful in optimization (e.g., in the method of gradient
descent).
This principle tells us that nature’s laws quite frequently seem to be derivable by

assuming a certain quantity—called action—is minimized. Considering, then, that
the gradient supplies us with a tool for optimizing functions, it is unsurprising that
the gradient enters into the equations of motion of many physical quantities.
The gradient is coordinate-independent, but its coordinate-free definitions don’t

add much to our intuition.

Equation 5.19 gradient: cartesian coordinates

grad 5 =
[
%G 5 %H 5 %I 5

]>

5.3.2 Vector Fields from Gradients Are Special

Although all gradients are vector fields, not all vector fields are gradients. That
is, given a vector field L , it may or may not be equal to the gradient of any scalar-
valued function 5 . Let’s say of a vector field that is a gradient that it has gradience.3

Those vector fields that are gradients have special properties. Surprisingly, those
properties are connected to path independence and curl. It can be shown that iff
a field is a gradient, line integrals of the field are path independent. That is, for a
vector field,

gradience⇔path independence. (5.20)

Considering what we know from section 5.2 about path independence we can
expand figure 5.5 to obtain figure 5.10.

3. This is nonstandard terminology, but we’re bold.
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