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5.3 Gradient

5.3.1 Gradient LINK
4J

The gradient grad of a scalar-valued function 5 :R3→R is a vector
field L :R3→R3; that is, grad 5 is a vector-valued function on R3. The
gradient’s local direction andmagnitude are those of the local maximum rate of
increase of 5 . This makes it useful in optimization (e.g., in the method of gradient
descent).
This principle tells us that nature’s laws quite frequently seem to be derivable by

assuming a certain quantity—called action—is minimized. Considering, then, that
the gradient supplies us with a tool for optimizing functions, it is unsurprising that
the gradient enters into the equations of motion of many physical quantities.
The gradient is coordinate-independent, but its coordinate-free definitions don’t

add much to our intuition.

Equation 5.19 gradient: cartesian coordinates

grad 5 =
[
%G 5 %H 5 %I 5

]>

5.3.2 Vector Fields from Gradients Are Special

Although all gradients are vector fields, not all vector fields are gradients. That
is, given a vector field L , it may or may not be equal to the gradient of any scalar-
valued function 5 . Let’s say of a vector field that is a gradient that it has gradience.3

Those vector fields that are gradients have special properties. Surprisingly, those
properties are connected to path independence and curl. It can be shown that iff
a field is a gradient, line integrals of the field are path independent. That is, for a
vector field,

gradience⇔path independence. (5.20)

Considering what we know from section 5.2 about path independence we can
expand figure 5.5 to obtain figure 5.10.

3. This is nonstandard terminology, but we’re bold.

https://math.ricopic.one/4j
https://math.ricopic.one/4j
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Figure 5.10. An implication graph relating gradience, zero curl, zero circulation, path
independence, and connectedness. Green edges represent implication (0 implies 1) and
black edges represent logical conjunctions.

One implication is that gradients have zero curl! Many important fields that describe
physical interactions (e.g., static electric fields, Newtonian gravitational fields) are
gradients of scalar fields called potentials.

5.3.3 Exploring Gradient

Gradient is perhaps best explored by considering it for a scalar field on R2. Such a
field in cartesian coordinates 5 (G, H) has gradient

grad 5 =
[
%G 5 %H 5

]>
(5.21)

That is, grad 5 = L = %G 5 î + %H 5 ĵ. If we overlay a quiver plot of L over a “color
density” plot representing the 5 , we can increase our intuition about the gradient.
First, load some Python packages.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *

Now we define some symbolic variables and functions.

x, y = sp.symbols('x y', real=True)

Rather than repeat code, let’s write a single function grad_plotter_2D() to
make several of these plots.
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def grad_plotter_2D(
field=x*y, grid_width=3, grid_decimate_x=8, grid_decimate_y=8,
norm=None, # Density plot normalization
scale=None, # Arrow length scale (auto)
print_vector=True, mask=False, # Mask vector lengths

):
# Define symbolics
x, y = sp.symbols('x y', real=True)
field = sp.sympify(field)
# Compute vector field
F_x = field.diff(x).simplify()
F_y = field.diff(y).simplify()
if field.is_constant():

print('Warning: field is constant (no plot)')
if print_vector:

print(f'The gradient is:')
print(sp.Array([F_x, F_y]))

# Lambdify for numerics
F_x_fun = sp.lambdify((x, y), F_x, 'numpy')
F_y_fun = sp.lambdify((x, y), F_y, 'numpy')
if F_x.is_constant:

F_x_fun1 = F_x_fun # Dummy
F_x_fun = lambda x, y: F_x_fun1(x, y) * np.ones(x.shape)

if F_y.is_constant:
F_y_fun1 = F_y_fun # Dummy
F_y_fun = lambda x, y: F_y_fun1(x, y) * np.ones(x.shape)

if not field.is_constant():
den_fun = sp.lambdify((x, y), field, 'numpy')

# Create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
# Evaluate numerically
F_x_num = F_x_fun(X, Y)
F_y_num = F_y_fun(X, Y)
if not field.is_constant():

den_num = den_fun(X, Y)
# Mask F_x and F_y
if mask:

masking_a = np.sqrt(np.square(F_x_num) + np.square(F_y_num))
F_x_num = np.ma.masked_where(masking_a > w / 5., F_x_num)
F_y_num = np.ma.masked_where(masking_a > w / 5., F_y_num)

# Plot
if not field.is_constant():

fig, ax = plt.subplots()
cmap = plt.get_cmap('coolwarm')
im = plt.pcolormesh(X, Y, den_num, cmap=cmap, norm=norm)
plt.colorbar()
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dx = grid_decimate_y
dy = grid_decimate_x
plt.quiver(

X[::dx, ::dy], Y[::dx, ::dy],
F_x_num[::dx, ::dy], F_y_num[::dx, ::dy],
units='xy', scale=scale

)
plt.title(f'$f(x,y) = {sp.latex(field)}$')
return fig, ax

return 1, 1

Let’s inspect several cases. While considering the following plots, remember that
they all have zero curl!

fig, ax = grad_plotter_2D(field=x)
plt.draw()
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Figure 5.11. Gradient of 5 (G, H)= G

fig, ax = grad_plotter_2D(field=x+y)
plt.draw()
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Figure 5.12. Gradient of 5 (G, H)= G + H

fig, ax = grad_plotter_2D(field=1)

5.3.3.1 Gravitational Potential Gravitational potentials have the form of
1/distance. Let’s check out the gradient.
fig, ax = grad_plotter_2D(

field=1/sp.sqrt(x**2+y**2),
norm=SymLogNorm(linthresh=.3, linscale=.3), mask=True,

)
plt.draw()
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Figure 5.13. Gradient of 5 (G, H)= 1/
√
G2 + H2

5.3.3.2 Conic Section Fields Gradients of conic section fields can be explored.
The following is called a parabolic field.

fig, ax = grad_plotter_2D(field=x**2)
plt.draw()

The following are called elliptic fields.

fig, ax = grad_plotter_2D(field=x**2 + y**2)
plt.draw()
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Figure 5.14. Gradient of 5 (G, H)= G2 + H2

fig, ax = grad_plotter_2D(field=-x**2 - y**2)
plt.draw()
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Figure 5.15. Gradient of 5 (G, H)=−G2 − H2

The following is called a hyperbolic field.

fig, ax = grad_plotter_2D(field=x**2 - y**2)
plt.show()
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Figure 5.16. Gradient of 5 (G, H)= G2 − H2

5.4 Stokes and Divergence Theorems LINK
A4

Two theorems allow us to exchange certain integrals in R3 for others
that are easier to evaluate.

5.4.1 The Divergence Theorem

The divergence theorem asserts the equality of the surface integral of a vector field
L and the triple integral of div L over the volume + enclosed by the surface ( in R3.
That is, ¨

(

L · n d(=
˚

+

div L d+.

Caveats are that + is a closed region bounded by the orientable4 surface ( and
that L is continuous and continuously differentiable over a region containing + .
This theorem makes some intuitive sense: we can think of the divergence inside the
volume “accumulating” via the triple integration and equaling the corresponding
surface integral. For more on the divergence theorem, see (Kreyszig 2011; § 10.7)
and (Schey 2005; pp. 45-52).
A lovely application of the divergence theorem is that, for any quantity of con-

served stuff (mass, charge, spin, etc.) distributed in a spatialR3 with time-dependent
density � :R4→R and velocity field v :R4→R3, the divergence theorem can be

4. A surface is orientable if a consistent normal direction can be defined. Most surfaces are orientable,
but some, notably the Möbius strip, cannot be. See (Kreyszig 2011; § 10.6) for more.

https://math.ricopic.one/a4
https://math.ricopic.one/a4

