6

Fourier and Orthogonality

In this chapter we will explore Fourier series and transforms.

6.1 Fourier Series LINK of LIN

Fourier series are mathematical series that can represent a periodic signal as a sum of sinusoids at different amplitudes and frequencies.

Let's begin with the definition.

Definition 6.1

The *Fourier analysis* of a periodic function $y(t)$ is, for $n \in \mathbb{N}_0$, period T, and angular frequency $\omega_n = 2\pi n/T$,

$$
a_0 = \frac{2}{T} \int_T y(t)dt
$$

\n
$$
a_n = \frac{2}{T} \int_T y(t) \cos(\omega_n t)dt
$$

\n
$$
b_n = \frac{2}{T} \int_T y(t) \sin(\omega_n t)dt.
$$

1. It's important to note that the symbol ω_n , in this context, is not the natural frequency, but a frequency indexed by integer n .

The *Fourier synthesis* of a periodic function $y(t)$ with analysis components a_n and b_n corresponding to ω_n is

$$
y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\omega_n t) + b_n \sin(\omega_n t).
$$

Let's consider the complex form of the Fourier series, which is equivalent to [definition 6.1.](#page-0-1) It may be helpful to review Euler's formula(s)—see [appendix C.4.](#page--1-0)

Definition 6.2

The *Fourier analysis* of a periodic function $y(t)$ is, for $n \in \mathbb{N}_0$, period T, and angular frequency $\omega_n = 2\pi n/T$,

$$
c_{\pm n} = \frac{1}{T} \int_{-T/2}^{T/2} y(t) e^{-j\omega_n t} dt.
$$

The *Fourier synthesis* of a periodic function $y(t)$ with analysis components c_n corresponding to ω_n is

$$
y(t) = \sum_{n = -\infty}^{\infty} c_n e^{j\omega_n t}.
$$

We call the integer *n* a **harmonic** and the frequency associated with it,

$$
\omega_n=2\pi n/T,
$$

the **harmonic frequency**. There is a special name for the first harmonic $(n = 1)$: the **fundamental frequency**. It is called this because all other frequency components are integer multiples of it.

It is also possible to convert between the two representations above.

Definition 6.3

The complex Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_0$ and a_n and b_n as defined above,

$$
c_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp j b_{|n|} \right)
$$

The sinusoidal Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_0$ and c_n as defined above,

$$
a_n = c_n + c_{-n}
$$
 and

$$
b_n = j (c_n - c_{-n}).
$$

The **harmonic amplitude** C_n is

$$
C_n = \sqrt{a_n^2 + b_n^2}
$$

$$
= 2\sqrt{c_n c_{-n}}.
$$

A **magnitude line spectrum** is a graph of the harmonic amplitudes as a function of the harmonic frequencies. The **harmonic phase** is

$$
\theta_n = -\arctan_2(b_n, a_n) \qquad \text{(see appendix C.2.11)}
$$

$$
= \arctan_2(\mathfrak{I}(c_n), \mathfrak{R}(c_n)).
$$
\n(6.1)

The illustrationof [figure 6.1](#page-2-0) shows how sinusoidal components sum to represent a square wave. A line spectrum is also shown.

Figure 6.1. A partial sum of Fourier components of a square wave shown through time and frequency. The spectral amplitude shows the amplitude of the corresponding Fourier component.

Let us compute the associated spectral components in the following example.

Example 6.1

Compute the first five harmonic amplitudes that represent the line spectrum for a square wave in the figure above.

Assume a square wave with amplitude 1. Compute a_n :

$$
a_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos(2\pi nt/T) dt
$$

= $-\frac{2}{T} \int_{-T/2}^{0} \cos(2\pi nt/T) dt + \frac{2}{T} \int_{0}^{T/2} \cos(2\pi nt/T) dt$

⁼⁰ because cosine is *even*.

Compute b_n :

$$
b_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \sin(2\pi nt/T) dt
$$

= $-\frac{2}{T} \int_{-T/2}^{0} \sin(2\pi nt/T) dt + \frac{2}{T} \int_{0}^{T/2} \sin(2\pi nt/T) dt$
= $\frac{2}{n\pi} (1 - \cos(n\pi))$
= $\begin{cases} 0 & n \text{ even} \\ \frac{4}{n\pi} & n \text{ odd} \end{cases}$.

Therefore,

$$
C_n = \sqrt{a_n^2 + b_n^2}
$$

\n
$$
C_0 = 0 \text{ (even)}
$$

\n
$$
C_1 = \frac{4}{\pi}
$$

\n
$$
C_2 = 0 \text{ (even)}
$$

\n
$$
C_3 = \frac{4}{3\pi}
$$

\n
$$
C_4 = 0 \text{ (even)}
$$

\n
$$
C_5 = \frac{4}{5\pi}.
$$

6.2 Fourier Transform Research State of Transform Research State of Transform Research State of Transform

We begin with the usual loading of modules.

```
import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
```
Let's consider a periodic function f with period $T(T)$. Each period, the function has a triangular pulse of width δ (pulse_width) and height $\delta/2$.

```
period = 15 # period
pulse_width = 2 # pulse width
```
First, we plot the function f in the time domain. Let's begin by defining f.

```
def pulse_train(t,T,pulse_width):
  f = lambda x:pulse_width/2-abs(x) # pulse
 tm = np্ \mod(t, T)if tm \leq pulse\_width/2:
    return f(tm)
  elif tm \geq T-pulse\_width/2:
    return f(-(tm-T))else:
    return 0
```
Now, we develop a numerical array in time to plot f .

```
N = 151 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))for i, t_now in enumerate(tpp):
  fpp[i] = pulse_train(t_now,period,pulse_width)
```
Now we plot.

```
fig, ax = plt.subplots()ax.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(
  [0,period],
  [0,'$T='+str(period)+'$ s']
\lambdaplt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.draw()
```
