
Fourier and Orthogonality 119

6.2 Fourier Transform LINK
0J

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!

Let’s consider a periodic function 5 with period) (T). Each period,
the function has a triangular pulse of width � (pulse_width) and height �/2.
period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function 5 in the time domain. Let’s begin by defining 5 .

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to plot 5 .

N = 151 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

Now we plot.

fig, ax = plt.subplots()
ax.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.draw()

https://math.ricopic.one/0j
https://math.ricopic.one/0j

120 Chapter 6

0) = 15 s

time (s)

0

�/2

Figure 6.2. Triangle pulse train with period) and pulse width �.

Consider the following argument. Just as a Fourier series is a frequency domain
representation of a periodic signal, a Fourier transform is a frequency domain
representation of an aperiodic signal (we will rigorously define it in a moment).
The Fourier series components will have an analog, then, in the Fourier transform.
Recall that they can be computed by integrating over a period of the signal. If
we increase that period infinitely, the function is effectively aperiodic. The result
(within a scaling factor) will be the Fourier transform analog of the Fourier series
components.
Let us approach this understanding by actually computing the Fourier series

components for increasing period) using definition 6.1.We’ll use sympy to compute
the Fourier series cosine and sine components 0= and 1= for component = (n) and
period) (T).

x, a_0, a_n, b_n = sp.symbols('x, a_0, a_n, b_n', real=True)
delta, T = sp.symbols('delta, T', positive=True)
n = sp.symbols('n', nonnegative=True)
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2, delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x, -delta/2, delta/2) # otherwise zero

).simplify()
print(sp.Eq(a_n,an), sp.Eq(b_n,bn))

Fourier and Orthogonality 121

Eq(a_n, Piecewise((T*(1 - cos(pi*delta*n/T))/(pi**2*n**2), n > 0),
(delta**2/(2*T), True))) Eq(b_n, 0)↩→

Furthermore, let us compute the harmonic amplitude
(f_harmonic_amplitude):

�= =

√
02
= + 12

= (6.2)

which we have also scaled by a factor)/� in order to plot it with a convenient scale.
C_n = sp.symbols('C_n', positive=True)
cn = sp.sqrt(an**2+bn**2)
print(sp.Eq(C_n, cn))

Eq(C_n, Piecewise((T*Abs(cos(pi*delta*n/T) - 1)/(pi**2*n**2), n > 0),
(delta**2/(2*T), True)))↩→

Now we lambdify the symbolic expression for a numpy function.

cn_f = sp.lambdify((n, T, delta), cn)

Now we can plot. Write a function to plot pulses in the time domain with the
corresponding frequency spectrum.

def plot_pulses_and_spectrum(T, pulse_width, omega_max):
n_max = round(omega_max*T/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/T
fig, ax = plt.subplots(1, 2)
plt.sca(ax[0])
for i in range(0, 3):

tpp = np.linspace(-T/2, 5*T/2,N)
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now, T, pulse_width)
plt.plot(tpp, fpp, 'b-', linewidth=2)

plt.xlim([-T/2, 3*T/2])
plt.xticks([0, T], [0, '$T='+str(T)+'$ s'])
plt.yticks([0, pulse_width/2], ['0', '$\delta/2$'])
plt.xlabel('time (s)')
plt.sca(ax[1])
plt.stem(

omega, cn_f(n_a, T, pulse_width)*T/pulse_width, 'bo-'
)
plt.xlim([0, omega_max])
plt.ylim([0, 1.1])
plt.xlabel('Frequency ω (rad/s)')
plt.ylabel('$C_n T/\delta$')
return fig

122 Chapter 6

Now we plot the pulses and their spectra for) ∈ [5, 15, 25] rad/s and �= 2.

omega_max = 12 # Maximum frequency to plot
fig = plot_pulses_and_spectrum(5, pulse_width, omega_max)
plt.draw()

0) = 5 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.3. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 5 s.

fig = plot_pulses_and_spectrum(15, pulse_width, omega_max)
plt.draw()

0) = 15 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.4. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 15 s.

fig = plot_pulses_and_spectrum(25, pulse_width, omega_max)
plt.draw()

Fourier and Orthogonality 123

0) = 25 s

time (s)

0

�/2

0.0 2.5 5.0 7.5 10.0

Frequency $ (rad/s)

0.0

0.2

0.4

0.6

0.8

1.0

�
=
)
/�

Figure 6.5. Triangle pulse train with period) and pulse width � and its Fourier
series components for) = 25 s.

The line spectra are shown in the right-hand columns of the plots above. Note that
with our chosen scaling, as) increases, the line spectra reveal a distinct waveform.
Let � be the continuous function of angular frequency $

�($)= �
2
· sin2($�/4)
($�/4)2 . (6.3)

First, we plot it.

def F(w):
return pulse_width/2*np.sin(w*pulse_width/4)**2 / \

(w*pulse_width/4)**2
N = 201 # number of points to plot
wpp = np.linspace(0.0001, omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
fig, ax = plt.subplots()
plt.plot(wpp, Fpp, 'b-', linewidth=2) # plot
plt.xlim([0, omega_max])
plt.yticks([0, pulse_width/2],['0','$\delta/2$'])
plt.xlabel('Frequency ω (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

124 Chapter 6

0 2 4 6 8 10 12

Frequency $ (rad/s)

0

�/2

�
($
)

Figure 6.6. Continuous function �($).

The plot of � is clearly emerging from the preceding line spectra as the period)
increases.
Now we are ready to define the Fourier transform and its inverse. We will define

the Fourier transform in two ways: as a trigonometric transform and as a complex
transform. We begin with the trigonometric transform and its inverse.

Definition 6.4: Fourier Transform (Trigonometric)

Fourier transform (analysis):

�($)=
ˆ ∞
−∞

H(C) cos($C)3C (6.4)

�($)=
ˆ ∞
−∞

H(C) sin($C)3C. (6.5)

Inverse Fourier transform (synthesis):

H(C)= 1
2�

ˆ ∞
−∞

�($) cos($C)3$+ 1
2�

ˆ ∞
−∞

�($) sin($C)3$. (6.6)

The Fourier transform is a generalization of the Fourier series to aperiodic func-
tions (i.e., functions with infinite period). The complex form of the Fourier transform
is more convenient for analysis and computation, as we will see.

Fourier and Orthogonality 125

Definition 6.5: Fourier Transform (Complex)

Fourier transform ℱ (analysis):

ℱ (H(C))=.($)=
ˆ ∞
−∞

H(C)4−9$C3C. (6.7)

Inverse Fourier transform ℱ −1 (synthesis):

ℱ −1(.($))= H(C)= 1
2�

ˆ ∞
−∞

.($)4 9$C3$. (6.8)

So now we have defined the Fourier transform. There are many applications,
including solving differential equations and frequency domain

representations—called spectra—of time domain functions.
There is a striking similarity between the Fourier transform and the Laplace

transform, with which you are already acquainted. In fact, the Fourier transform is
a special case of a Laplace transform with Laplace transform variable B = 9$ instead
of having some real component. Both transforms convert differential equations to
algebraic equations, which can be solved and inversely transformed to find time-
domain solutions. The Laplace transform is especially important to use when an
input function to a differential equation is not absolutely integrable and the Fourier
transform is undefined (for example, our definitionwill yield a transform for neither
the unit step nor the unit ramp functions). However, the Laplace transform is also
preferred for initial value problems due to its convenient way of handling them. The
two transforms are equally useful for solving steady state problems. Although the
Laplace transform has many advantages, for spectral considerations, the Fourier
transform is the only game in town.
A table of Fourier transforms and their properties can be found in appendix B.2.

Example 6.2

Consider the aperiodic signal H(C)= DB(C)4−0C with DB the unit step function and
0 > 0. The signal is plotted below. Derive the complex frequency spectrum and
plot its magnitude and phase.

126 Chapter 6

−2 −1 0 1 2 3 4 5
0

0.5

1

C

H
(C
)

Figure 6.7. An aperiodic signal.

The signal is aperiodic, so the Fourier transform can be computed from
equation (6.7):

.($)=
ˆ ∞
−∞

H(C)4 9$C3C

=

ˆ ∞
−∞

DB(C)4−0C 4 9$C3C (def. of H)

=

ˆ ∞
0

4−0C 4 9$C3C (DB effect)

=

ˆ ∞
0

4(−0+9$)C3C (multiply)

=
1

−0 + 9$ 4
(−0+9$)C

����∞
0
3C (antiderivative)

=
1

−0 + 9$
(

lim
C→∞

4(−0+9$)C − 40
)

(evaluate)

=
1

−0 + 9$
(

lim
C→∞

4−0C 4 9$C − 1
)

(arrange)

=
1

−0 + 9$ ((0)(complex with mag≤ 1) − 1) (limit)

=
−1

−0 + 9$ (consequence)

=
1

0 − 9$

=
0 + 9$
0 + 9$ ·

1
0 − 9$ (rationalize)

Fourier and Orthogonality 127

=
0 + 9$
02 +$2

.

The magnitude and phase of this complex function are straightforward to
compute:

|.($)| =
√
<(.($))2 +=(.($))2

=
1

02 +$2

√
02 +$2

=
1

√
02 +$2

∠.($)= arctan($/0).
Now we can plot these functions of $. Setting 0 = 1 (arbitrarily), we obtain the

plots of figure 6.8.

0

0.5

1

|.
($
)|

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

$

∠
.
($
)

Figure 6.8. The magnitude and phase of the Fourier transform.

128 Chapter 6

6.3 Generalized Fourier Series and Orthogonality LINK
UJ

Let 5 :R→C, 6 :R→C, and F :R→C be complex functions. For
square-integrable2 5 , 6, and F, the inner product of 5 and 6 with
weight function F over the interval [0, 1] ⊆R is3

〈 5 , 6〉F =

ˆ 1

0

5 (G)6(G)F(G) dG

where 6 denotes the complex conjugate of 6. The inner product of functions can be
considered analogous to the inner (or dot) product of vectors.
The fourier series components can be found by a special property of the sin and

cos functions called orthogonality. In general, functions 5 and 6 from above are
orthogonal over the interval [0, 1] iff

〈 5 , 6〉F = 0

for weight function F. Similar to how a set of orthogonal vectors can be a basis for
a vector space, a set of orthogonal functions can be a basis for a function space: a
vector space of functions from one set to another (with certain caveats).
In addition to some sets of sinusoids, there are several other important sets of

functions that are orthogonal. For instance, sets of legendre polynomials (Kreyszig
2011; § 5.2) and bessel functions (§ 5.4) are orthogonal.
As with sinusoids, the orthogonality of some sets of functions allows us to com-

pute their series components. Let functions 50 , 51 , · · · be orthogonal with respect
to weight function F on interval [0, 1] and let 0 , 1 , · · · be real constants. A
generalized fourier series is (§ 11.6)

5 (G)=
∞∑
<=0

< 5<(G)

and represents a function 5 as a convergent series. It can be shown that the Fourier
components < can be computed from

< =
〈 5 , 5<〉F
〈 5< , 5<〉F

.

In keeping with our previous terminology for fourier series, section 6.3 and
section 6.3 are called general fourier synthesis and analysis, respectively.
For the aforementioned legendre and bessel functions, the generalized fourier

series are called fourier-legendre and fourier-bessel series (§ 11.6). These and

2. A function 5 is square-integrable if
´∞
−∞ | 5 (G)|2 dG <∞.

3. This definition of the inner product can be extended to functions on R2 and R3 domains using double-
and triple-integration. See (Schey 2005; p. 261).

https://math.ricopic.one/uj
https://math.ricopic.one/uj

