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important topic. Many PDEs have no known analytic solution, so for these numeric
solution is the best available option.1 However, it is important to note that the
insight one can gain from an analytic solution is often much greater than that from
a numeric solution. This is easily understood when one considers that a numeric
solution is an approximation for a specific set of initial and boundary conditions.
Typically, very little can be said of what would happen in general, although this is
often what we seek to know. So, despite the importance of numeric solution, one
should always prefer an analytic solution.
Three good texts on PDEs for further study are (Kreyszig 2011; Ch. 12), (Strauss

2007), and (Haberman 2018).

7.1 Classifying PDEs LINK
VV

PDEs often have an infinite number of solutions; however, when
applying them to physical systems, we usually assume that a deter-
ministic, or at least a probabilistic, sequence of events will occur. Therefore, we
impose additonal constraints on a PDE, usually in the form of

1. initial conditions, values of independent variables over all space at an initial
time and

2. boundary conditions, values of independent variables (or their derivatives)
over all time.

Ideally, imposing such conditions leaves us with awell-posed problem, which
has three aspects. (Bove, Colombini, and Santo 2006; § 1.5)

existence There exists at least one solution.
uniqueness There exists at most one solution.
stability If the PDE, boundary conditons, or initial conditions are changed slightly,

the solution changes only slightly.

As with ODEs, PDEs can be linear or nonlinear; that is, the dependent variables
and their derivatives can appear in only linear combinations (linear PDE) or in one
or more nonlinear combination (nonlinear PDE). As with ODEs, there are more
known analytic solutions to linear PDEs than nonlinear PDEs.
The order of a PDE is the order of its highest partial derivative. A great many

physical models can be described by second-order PDEs or systems thereof. Let D
be an independent scalar variable, a function of < temporal and spatial variables
G8 ∈R= . A second-order linear PDE has the form, for coefficients , �, �, 0=3�, and

1. There are some analytic techniques for gaining insight into PDEs for which there are no known
solutions, such as considering the phase space. This is an active area of research; for more, see (Bove,
Colombini, and Santo 2006).
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real functions of G8 , (Strauss 2007; § 1.6)
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where 5 is called a forcing function. When 5 is zero, section 7.1 is called homoge-

neous. We can consider the coefficients 8 9 to be components of a matrix � with
rows indexed by 8 and columns indexed by 9. There are four prominent classes
defined by the eigenvalues of �:

elliptic the eigenvalues all have the same sign,
parabolic the eigenvalues have the same sign except one that is zero,
hyperbolic exactly one eigenvalue has the opposite sign of the others, and
ultrahyperbolic at least two eigenvalues of each signs.

The first three of these have received extensive treatment. They are named
after conic sections due to the similarity the equations have with polynomials
when derivatives are considered analogous to powers of polynomial variables. For
instance, here is a case of each of the first three classes,

%2
GGD + %2

HHD = 0 (elliptic)

%2
GGD − %2

HHD = 0 (hyperbolic)

%2
GGD − %CD = 0. (parabolic)

When � depends on G8 , it may have multiple classes across its domain. In general,
this equation and its associated initial and boundary conditions do not comprise
a well-posed problem; however several special cases have been shown to be well-
posed. Thus far, the most general statement of existence and uniqueness is the
cauchy-kowalevski theorem for cauchy problems.



140 Chapter 7

7.2 Sturm-Liouville Problems LINK
2H

Before we introduce an important solution method for PDEs in
section 7.3, we consider an ordinary differential equation that will
arise in that method when dealing with a single spatial dimension G: the sturm-

liouville (S-L) differential equation. Let ?, @, � be functions of G on open interval
(0, 1). Let - be the dependent variable and � constant. The regular S-L problem is
the S-L ODE2

d
dG
(?-′) + @- +��- = 0 (7.1)

with boundary conditions

�1-(0) + �2-
′(0)= 0 (7.2)

�3-(1) + �4-
′(1)= 0 (7.3)

with coefficients �8 ∈R. This is a type of boundary value problem.
This problem has nontrivial solutions, called eigenfunctions -=(G) with = ∈Z+,

corresponding to specific values of �=�= called eigenvalues.3 There are several
important theorems proven about this (see (Haberman 2018; § 5.3)). Of greatest
interest to us are that

1. there exist an infinite number of eigenfunctions -= (unique within a multi-
plicative constant),

2. there exists a unique corresponding real eigenvalue �= for each eigenfunction
-= ,

3. the eigenvalues can be ordered as �1 <�2 < · · · ,
4. eigenfunction -= has = − 1 zeros on open interval (0, 1),
5. the eigenfunctions -= form an orthogonal basis with respect to weighting

function � such that any piecewise continuous function 5 : [0, 1]→R can be
represented by a generalized fourier series on [0, 1].

This last theorem will be of particular interest in section 7.3.

2. For the S-L problem to be regular, it has the additional constraints that ?, @, � are continuous and
?, � > 0 on [0, 1]. This is also sometimes called the sturm-liouville eigenvalue problem. See (Haberman
2018; § 5.3) for the more general (non-regular) S-L problem and (§ 7.4) for the multi-dimensional analog.

3. These eigenvalues are closely related to, but distinct from, the “eigenvalues” that arise in systems of
linear ODEs.
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