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7.5 Problems LINK
B2

Problem 7.1 LINKHORTICULTURE The PDE of example 7.2 can be used to describe
the conduction of heat along a long, thin rod, insulated along its length, where
D(C , G) represents temperature. The initial and dirichlet boundary conditions in that
example would be interpreted as an initial temperature distribution along the bar
and fixed temperatures of the ends. Now consider the same PDE

%CD(C , G)= :%2
GGD(C , G) (7.23)

with real constant :, with mixed boundary conditions on interval G ∈ [0, !]
D(C , 0)= 0 (7.24a)

%GD(C , G)|G=! = 0, (7.24b)

and with initial condition

D(0, G)= 5 (G), (7.25)

where 5 is some piecewise continuous function on [0, !]. This represents the
insulation of one end (!) of the rod and the other end (0) is held at a fixed
temperature.
a. Assume a product solution, separate variables into -(G) and )(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= .
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial condition 5 (G) by construct-

ing it from a generalized fourier series of the product solution.
e. Let != : = 1 and

5 (G)=
{

0 for G ∈ [0, !/2)
100 for G ∈ [!/2, !]

(7.26)

as shown in figure 7.6. Compute the solution series components. Plot the
sum of the first 50 terms over G and C.

https://math.ricopic.one/b2
https://math.ricopic.one/b2
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Figure 7.6. Initial condition for problem 7.1.

Problem 7.2 LINKPOLTERGEIST The PDE of example 7.2 can be used to describe the
conduction of heat along a long, thin rod, insulated along its length, where D(C , G)
represents temperature. The initial and dirichlet boundary conditions in that exam-
ple would be interpreted as an initial temperature distribution along the bar and
fixed temperatures of the ends. Now consider the same PDE

%CD(C , G)= :%2
GGD(C , G) (7.27)

with real constant :, now with neumann boundary conditions on interval G ∈ [0, !]
%GD |G=0 = 0 and %GD |G=! = 0, (7.28a)

and with initial condition

D(0, G)= 5 (G), (7.29)

where 5 is some piecewise continuous function on [0, !]. This represents the com-
plete insulation of the ends of the rod, such that no heat flows from the ends (or
from anywhere else).
a. Assume a product solution, separate variables into -(G) and )(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= .
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial condition 5 (G) by construct-

ing it from a generalized fourier series of the product solution.
e. Let != : = 1 and 5 (G)= 100− 200/! |G − !/2| as shown in figure 7.7. Compute

the solution series components. Plot the sum of the first 50 terms over G and
C.

https://math.ricopic.one/poltergeist
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Figure 7.7. Initial condition for problem 7.2.

Problem 7.3 LINKKATHMANDU Consider the free vibration of a uniform and relatively
thin beam—with modulus of elasticity �, second moment of cross-sectional area �,
and mass-per-length �—pinned at each end. The PDE describing this is a version
of the euler-bernoulli beam equation for vertical motion D:

%2
CCD(C , G)=−
2%4

GGGGD(C , G) (7.30)

with real constant 
 defined as


2 =
��

�
. (7.31)

Pinned supports fix vertical motion such that we have boundary conditions on
interval G ∈ [0, !]

D(C , 0)= 0 and D(C , !)= 0. (7.32a)

Additionally, pinned supports cannot provide a moment, so

%2
GGD |G=0 = 0 and %2

GGD |G=! = 0. (7.32b)

Furthermore, consider the initial conditions

D(0, G)= 5 (G), and %CD |C=0 = 0. (7.33a)

where 5 is some piecewise continuous function on [0, !].
a. Assume a product solution, separate variables into -(G) and )(C), and set

the separation constant to −�.
b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues

�= . Assume real � > 0 (it’s true but tedious to show).
c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial conditions by constructing

it from a generalized fourier series of the product solution.
e. Let != 
= 1 and 5 (G)= sin(10�G/!) as shown in figure 7.8. Compute the

solution series components. Plot the sum of the first 50 terms over G and C.

https://math.ricopic.one/kathmandu
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Figure 7.8. Initial condition for problem 7.3.

Problem 7.4 LINKHURRIED Given the 1D heat equation,

%

%C
D(C , G)= 


%2

%G2
D(C , G),

with boundary conditions,

%

%G
D(C , G)

��
G=!

= 0

D(C , 0)= 0,

and initial condition,

D(0, G)=
{

1 !
3 ≤ G ≤ 2!

3

0 otherwise

a. show that this PDE is separable,
b. solve the sturm-liouville boundary condition problem,
c. find the fourier coefficients, and
d. given != 1, 
= 1, and using the first 100 terms of the infinite sum, plot the

solution at C = 0, C = 0.01, and C = 0.1.

Problem 7.5 LINKPLUCK Consider the one-dimensional wave equation PDE

%2
CCD(C , G)= 22%2

GGD(C , G) (7.34)

with real constant 2 and with dirichlet boundary conditions on inverval G ∈ [0, !]
D(C , 0)= 0 and D(C , !)= 0, (7.35a)

and with initial conditions (we need two because of the second time-derivative)

D(0, G)= 5 (G) and %CD(0, G)= 6(G), (7.36)

where 5 and 6 are some piecewise continuous functions on [0, !].

https://math.ricopic.one/hurried
https://math.ricopic.one/pluck
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Assumewe canmodel amusical instrument’s plucked stringwith equations (7.34)
to (7.36) with the initial velocity 6(G)= 0 and initial displacement 5 (G) given in
figure 7.9.

0 � !

0

�

G

5(
G
)

Figure 7.9. Initial condition for problem 7.5.

a. Assume a product solution, separate variables into -(G) and )(C), and set
the separation constant to −�.

b. Solve the boundary value problem for its eigenfunctions -= and eigenvalues
�= .

c. Solve for the general solution of the time variable ODE.
d. Write the product solution and apply the initial conditions by constructing

it from a generalized fourier series of the product solution.
e. Let � = 0.5, != 2 = 1, and � = 0.3. Compute the solution series components.

Plot the sum of the first 50 terms over G and C.



8 Optimization LINK
EW

This chapter concerns optimization mathematics.

8.1 Gradient Descent LINK
Y7

Consider a multivariate function 5 :R=→R that represents some cost
or value. This is called an objective function, and we often want to
find an ^ ∈R= that yields 5 ’s extremum: minimum or maximum, depending on
whichever is desirable.
It is important to note however that some functions have no finite extremum.

Other functions have multiple. Finding a global extremum is generally difficult;
however, many good methods exist for finding a local extremum: an extremum for
some region ' ⊂R= .
Themethod explored here is called gradient descent. It will soon become apparent

why it has this name.

8.1.1 Stationary Points

Recall from basic calculus that a function 5 of a single variable had potential
local extrema where d 5 (G)/dG = 0. The multivariate version of this, for multivariate
function 5 , is

grad 5 = 0.
A value ^ for which section 8.1.1 holds is called a stationary point. However, as in
the univariate case, a stationary point may not be a local extremum; in these cases,
it called a saddle point.
Consider the hessian matrix � with values, for independent variables G8 ,

�8 9 = %2
G8G 9

5 .

For a stationary point ^ , the second partial derivative test tells us if it is a local
maximum, local minimum, or saddle point:

https://math.ricopic.one/ew
https://math.ricopic.one/ew
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