
8 Optimization LINK
EW

This chapter concerns optimization mathematics.

8.1 Gradient Descent LINK
Y7

Consider a multivariate function 5 :R=→R that represents some cost
or value. This is called an objective function, and we often want to
find an ^ ∈R= that yields 5 ’s extremum: minimum or maximum, depending on
whichever is desirable.
It is important to note however that some functions have no finite extremum.

Other functions have multiple. Finding a global extremum is generally difficult;
however, many good methods exist for finding a local extremum: an extremum for
some region ' ⊂R= .
Themethod explored here is called gradient descent. It will soon become apparent

why it has this name.

8.1.1 Stationary Points

Recall from basic calculus that a function 5 of a single variable had potential
local extrema where d 5 (G)/dG = 0. The multivariate version of this, for multivariate
function 5 , is

grad 5 = 0.
A value ^ for which section 8.1.1 holds is called a stationary point. However, as in
the univariate case, a stationary point may not be a local extremum; in these cases,
it called a saddle point.
Consider the hessian matrix � with values, for independent variables G8 ,

�8 9 = %2
G8G 9

5 .

For a stationary point ^ , the second partial derivative test tells us if it is a local
maximum, local minimum, or saddle point:

https://math.ricopic.one/ew
https://math.ricopic.one/ew
https://math.ricopic.one/y7
https://math.ricopic.one/y7

162 Chapter 8

minimum If �(^) is positive definite (all its eigenvalues are positive),
^ is a local minimum.

maximum If �(^) is negative definite (all its eigenvalues are negative),
^ is a local maximum.

saddle If �(^) is indefinite (it has both positive and negative eigenvalues),
^ is a saddle point.

These are sometimes called tests for concavity: minima occur where 5 is convex
and maxima where 5 is concave (i.e. where − 5 is convex).
It turns out, however, that solving section 8.1.1 directly for stationary points is

generally hard. Therefore, we will typically use an iterative technique for estimating
them.

8.1.2 The Gradient Points the Way

Although section 8.1.1 isn’t usually directly useful for computing stationary points,
it suggests iterative techniques that are. Several techniques rely on the insight that
the gradient points toward stationary points. Recall from section 5.3 that grad 5 is
a vector field that points in the direction of greatest increase in 5 .
Consider starting at some point x0 and wanting to move iteratively closer to a

stationary point. So, if one is seeking a maximum of 5 , then choose x1 to be in the
direction of grad 5 . If one is seeking a minimum of 5 , then choose x1 to be opposite
the direction of grad 5 .
The question becomes: how far should we go in (or opposite) the direction of the

gradient? Surely too-small will require more iteration and too-large will lead to
poor convergence or missing minima altogether. This framing of the problem is
called line search. There are a few common methods for choosing , called the step
size, some more computationally efficient than others.
Two methods for choosing the step size are described below. Both are framed

as minimization methods, but changing the sign of the step turns them into
maximization methods.

8.1.3 The Classical Method

Let
g: = grad 5 (x:),

the gradient at the algorithm’s current estimate x: of the minimum. The classical
method of choosing is to attempt to solve analytically for

: = argmin

5 (x: − g:).

This solution approximates the function 5 as one varies . It is approximate because
as varies, so should x. But even with as the only variable, section 8.1.3 may be

Optimization 163

difficult or impossible to solve. However, this is sometimes called the “optimal”
choice for . Here “optimality” refers not to practicality but to ideality. This method
is rarely used to solve practical problems.
The algorithm of the classical gradient descent method can be summarized in the

pseudocode of algorithm 1. It is described further in (Kreyszig 2011; § 22.1).

Algorithm 1 Classical gradient descent

1: procedure classical_minimizer(5 ,x0,))
2: while �x >) do ⊲ until threshold) is met
3: g:← grad 5 (x:)
4: :← argmin 5 (x: − g:)
5: x:+1← x: − : g:
6: �x←‖x:+1 − x: ‖
7: :← : + 1
8: return x: ⊲ the threshold was reached

8.1.4 The Barzilai and Borwein Method

In practice, several non-classical methods are used for choosing step size . Most of
these construct criteria for step sizes that are too small and too large and prescribe
choosing some that (at least in certain cases) must be in the sweet-spot in between.
(Barzilai and Borwein 1988) developed such a prescription, which we now present.
Let Δx: = x: − x:−1 and Δg: = g: − g:−1. This method minimizes ‖ΔG − Δ6‖2 by

choosing

: =
Δx: ·Δg:
Δg: ·Δg:

.

The algorithm of this gradient descent method can be summarized in the
pseudocode of algorithm 2. It is described further in (Barzilai and Borwein 1988).

Algorithm 2 Barzilai and Borwein gradient descent

1: procedure barzilai_minimizer(5 ,x0,))
2: while �x >) do ⊲ until threshold) is met
3: g:← grad 5 (x:)
4: Δg:← g: − g:−1
5: Δx:← x: − x:−1

6: :←
Δx: ·Δg:
Δg: ·Δg:

7: x:+1← x: − : g:
8: �x←‖x:+1 − x: ‖
9: :← : + 1
10: return x: ⊲ the threshold was reached

164 Chapter 8

Example 8.1

Consider the functions (a) 51 :R2→R and (b) 52 :R2→R defined as
51(x)= (G1 − 25)2 + 13(G2 + 10)2

52(x)=
1
2
x ·�x − b · x

where

�=

[
20 0
0 10

]
and (8.1)

1 =
[
1 1

]>
. (8.2)

Use the method of (Barzilai and Borwein 1988) starting at some x0 to find a
minimum of each function.

First, load some Python packages.

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option("display.precision", 3) # Show only three decimal places

We begin by writing a class Gradient_descent_min to perform the gradient
descent. This is not optimized for speed.

class Gradient_descent_min():
""" A Barzilai and Borwein gradient descent class.

Inputs:
* f: Python function of x variables
* x: list of symbolic variables (eg [x1, x2])
* x0: list of numeric initial guess of a min of f
* T: step size threshold for stopping the descent

To execute the gradient descent call descend method.

nb: This is only for gradients in cartesian
coordinates! Further work would be to implement
this in multiple or generalized coordinates.
See the grad method below for implementation.

"""

def __init__(self,f,x,x0,T):
self.f = f
self.x = sp.Array(x)

Optimization 165

self.x0 = np.array(x0)
self.T = T
self.n = len(x0) # size of x
self.g = sp.lambdify(x,self.grad(f,x),'numpy')
self.xk = np.array(x0)
self.table = {}

def descend(self):
unpack variables
f = self.f
x = self.x
x0 = self.x0
T = self.T
g = self.g
initialize variables
N = 0
x_k = x0
dx = 2*T # can't be zero
x_km1 = .9*x0-.1 # can't equal x0
g_km1 = np.array(g(*x_km1))
N_max = 100 # max iterations
table_data = [[N,x0,np.array(g(*x0)),0]]
while (dx > T and N < N_max) or N < 1:
N += 1 # increment index
g_k = np.array(g(*x_k))
dg_k = g_k - g_km1
dx_k = x_k - x_km1
alpha_k = abs(dx_k.dot(dg_k)/dg_k.dot(dg_k))
x_km1 = x_k # store
x_k = x_k - alpha_k*g_k
save
t_list = [N,x_k,g_k,alpha_k]
t_list = [

[f"{t_i:.3g}" for t_i in t] if isinstance(t,np.ndarray) \
else t for t in t_list]

table_data.append(t_list)
self.xk = np.vstack((self.xk,x_k))
store other variables
g_km1 = g_k
dx = np.linalg.norm(x_k - x_km1) # check

self.tabulater(table_data)

def tabulater(self,table_data):
table = pd.DataFrame(table_data,columns=['N','x_k','g_k','alpha_k'])
self.table['python'] = table
self.table['latex'] = table.to_latex(index=False)

166 Chapter 8

def grad(self,f,x): # cartesian coord's gradient
return sp.derive_by_array(f(x),x)

First, consider 51.

x1, x2 = sp.symbols('x1, x2')
x = sp.Array([x1, x2])
f1 = lambda x: (x[0]-25)**2 + 13*(x[1]+10)**2
gd = Gradient_descent_min(f=f1, x=x, x0=[-50,40], T=1e-8)

Perform the gradient descent.

gd.descend()

Print the interesting variables.

print(gd.table['python'])

N x_k g_k alpha_k
0 0 [-50, 40] [-150, 1300] 0.000
1 1 [-43.7, -15] [-150, 1.3e+03] 0.042
2 2 [-38.4, -10] [-137, -131] 0.038
3 3 [-33.1, -10] [-127, 0.124] 0.041
4 4 [25, -10] [-116, -0.00962] 0.500
5 5 [25, -10.1] [-0.0172, 0.115] 0.500
6 6 [25, -10] [-1.84e-08, -1.38] 0.039
7 7 [25, -10] [-1.7e-08, 0.00219] 0.038
8 8 [25, -10] [-1.57e-08, 0] 0.038

Now let’s lambdify the function f1 so we can plot.

f1_lambda = sp.lambdify((x1, x2), f1(x), 'numpy')

Now let’s plot a contour plot with the gradient descent overlaid.

Optimization 167

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F1 = f1_lambda(X1,X2)
plt.contourf(X1,X2,F1)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(

[points[:-1], points[1:]], axis=1
)
lc = LineCollection(

segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(

xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.draw()

168 Chapter 8

100 50 0 50 100

40

20

0

20

40

0

8000

16000

24000

32000

40000

48000

56000

64000

Figure 8.1. Gradient descent on 51.

Now consider 52.

A = sp.Matrix([[10, 0], [0, 20]])
b = sp.Matrix([[1, 1]])
def f2(x):
X = sp.Array([x]).tomatrix().T
return 1/2*X.dot(A*X) - b.dot(X)

gd = Gradient_descent_min(f=f2, x=x, x0=[50, -40], T=1e-8)

Perform the gradient descent.

gd.descend()

Print the interesting variables.

print(gd.table['python'])

N x_k g_k alpha_k
0 0 [50, -40] [499.0, -801.0] 0.000
1 1 [17.6, 12] [499, -801] 0.065
2 2 [8.07, -1.01] [175, 240] 0.054
3 3 [3.62, 0.174] [79.7, -21.2] 0.056
4 4 [0.489, -0.0468] [35.2, 2.49] 0.089
5 5 [0.104, 0.145] [3.89, -1.94] 0.099
6 6 [0.101, 0.00238] [0.0381, 1.9] 0.075
7 7 [0.1, 0.05] [0.00949, -0.952] 0.050
8 8 [0.1, 0.05] [0.00474, 9.58e-05] 0.050
9 9 [0.1, 0.05] [0.00237, -2.38e-09] 0.100
10 10 [0.1, 0.05] [1.93e-06, 2.37e-09] 0.100
11 11 [0.1, 0.05] [0, -2.37e-09] 0.100

Optimization 169

Now let’s lambdify the function f2 so we can plot.

f2_lambda = sp.lambdify((x1, x2), f2(x), 'numpy')

Now let’s plot a contour plot with the gradient descent overlaid.

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F2 = f2_lambda(X1,X2)
plt.contourf(X2,X1,F2)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(

[points[:-1], points[1:]], axis=1
)
lc = LineCollection(

segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(

xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()

170 Chapter 8

40 20 0 20 40100

75

50

25

0

25

50

75

100

0

10000

20000

30000

40000

50000

60000

70000

80000

Figure 8.2. Gradient descent on 52.

8.2 Constrained Linear Optimization LINK
DJ

Consider a linear objective function 5 :R=→R with variables G8 in
vector x and coefficients 28 in vector c:

5 (x)= c · x
subject to the linear constraints—restrictions on G8—

�x ≤ a, (8.3)

�x = b, and (8.4)

l ≤ x ≤ u (8.5)

where � and � are constant matrices and a , b, l , u are =-vectors. This is one for-
mulation of what is called a linear programming problem. Usually we want to
maximize 5 over the constraints. Such problems frequently arise throughout engi-
neering, for instance in manufacturing, transportation, operations, etc. They are
called constrained because there are constraints on x; they are called linear because
the objective function and the constraints are linear.
We call a pair (x , 5 (x)) for which x satisfies equation (8.3) a feasible solution. Of

course, not every feasible solution is optimal: a feasible solution is optimal iff there
exists no other feasible solution for which 5 is greater (assuming we’re maximizing).
We call the vector subspace of feasible solutions (⊂R= .

https://math.ricopic.one/dj
https://math.ricopic.one/dj

