
170 Chapter 8

40 20 0 20 40100

75

50

25

0

25

50

75

100

0

10000

20000

30000

40000

50000

60000

70000

80000

Figure 8.2. Gradient descent on 52.

8.2 Constrained Linear Optimization LINK
DJ

Consider a linear objective function 5 :R=→R with variables G8 in
vector x and coefficients 28 in vector c:

5 (x)= c · x
subject to the linear constraints—restrictions on G8—

�x ≤ a, (8.3)

�x = b, and (8.4)

l ≤ x ≤ u (8.5)

where � and � are constant matrices and a , b, l , u are =-vectors. This is one for-
mulation of what is called a linear programming problem. Usually we want to
maximize 5 over the constraints. Such problems frequently arise throughout engi-
neering, for instance in manufacturing, transportation, operations, etc. They are
called constrained because there are constraints on x; they are called linear because
the objective function and the constraints are linear.
We call a pair (x , 5 (x)) for which x satisfies equation (8.3) a feasible solution. Of

course, not every feasible solution is optimal: a feasible solution is optimal iff there
exists no other feasible solution for which 5 is greater (assuming we’re maximizing).
We call the vector subspace of feasible solutions (⊂R= .

https://math.ricopic.one/dj
https://math.ricopic.one/dj

Optimization 171

8.2.1 Feasible Solutions Form a Polytope

Consider the effect of the constraints. Each of the equalities and inequalities defines
a linear hyperplane in R= (i.e. a linear subspace of dimension = − 1): either as a
boundary of ((inequality) or as a restriction of (to the hyperplane. When joined,
these hyperplanes are the boundary of ((equalities restrict (to lower dimension).
So we see that each of the boundaries of (is flat, which makes (a polytope (in R2,
a polygon). What makes this especially interesting is that polytopes have vertices
where the hyperplanes intersect. Solutions at the vertices are called basic feasible
solutions.

8.2.2 Only the Vertices Matter

Our objective function 5 is linear, so for some constant ℎ, 5 (x)= ℎ defines a level
set that is itself a hyperplane � in R= . If this hyperplane intersects (at a point x,
(x , 5 (x)= ℎ) is the corresponding solution. There are three possibilities when �
intersects (:

1. � ∩ (is a vertex of (,
2. � ∩ (is a boundary hyperplane of (, or
3. � ∩ (slices through the interior of (.
However, this third option implies that there exists a level set � corresponding

to 5 (x)= 6 such that � intersects (and 6 > ℎ, so solutions on � ∩ (are not optimal.
(We have not proven this, but it may be clear from our progression.) We conclude
that either the first or second case must be true for optimal solutions. And notice
that in both cases, a (potentially optimal) solution occurs at at least one vertex. The
key insight, then, is that an optimal solution occurs at a vertex of (.
This means we don’t need to search all of (, or even its boundary: we need

only search the vertices. Helpful as this is, it restricts us down to
(=
constraints

)
potentially optimal solutions—usually still too many to search in a naïve way. In
(lec:the_simplex_algorithm), this is mitigated by introducing a powerful searching
method.

172 Chapter 8

8.3 The Simplex Algorithm LINK
MT

The simplex algorithm (or “method”) is an iterative technique for
finding an optimal solution of the linear programming problem of
section 8.2. The details of the algorithm are somewhat involved, but the basic idea
is to start at a vertex of the feasible solution space (and traverse an edge of the
polytope that leads to another vertex with a greater value of 5 . Then, repeat this
process until there is no neighboring vertex with a greater value of 5 , at which point
the solution is guaranteed to be optimal.
Rather than present the details of the algorithm, we choose to show an example

using Python. There have been some improvements on the original algorithm that
have been implemented into many standard software packages, including Python’s
scipy package (Virtanen et al. 2019) module scipy.optimize.1

Example 8.2

Maximize the objective function

5 (x)= c · x (8.6)

for x ∈R2 and

c=
[
5 2

]>
(8.7)

subject to constraints

0≤ G1 ≤ 10 (8.8)

−5≤ G2 ≤ 15 (8.9)

4G1 + G2 ≤ 40 (8.10)

G1 + 3G2 ≤ 35 (8.11)

−8G1 − G2 ≥−75. (8.12)

First, load some Python packages.

from scipy.optimize import linprog
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Ecoding the Problem Before we can use linprog, we must first encode equa-
tions (8.6) and (8.8) into a form linprog will recognize. We begin with 5 , which
we can write as c · x with the coefficients of c as follows.

1. Another Python package pulp (PuLP) is probably more popular for linear programming; however,
we choose scipy.optimize because it has applications beyond linear programming.

https://math.ricopic.one/mt
https://math.ricopic.one/mt
https://pypi.org/project/PuLP/

