
172 Chapter 8

8.3 The Simplex Algorithm LINK
MT

The simplex algorithm (or “method”) is an iterative technique for
finding an optimal solution of the linear programming problem of
section 8.2. The details of the algorithm are somewhat involved, but the basic idea
is to start at a vertex of the feasible solution space (and traverse an edge of the
polytope that leads to another vertex with a greater value of 5 . Then, repeat this
process until there is no neighboring vertex with a greater value of 5 , at which point
the solution is guaranteed to be optimal.
Rather than present the details of the algorithm, we choose to show an example

using Python. There have been some improvements on the original algorithm that
have been implemented into many standard software packages, including Python’s
scipy package (Virtanen et al. 2019) module scipy.optimize.1

Example 8.2

Maximize the objective function

5 (x)= c · x (8.6)

for x ∈R2 and

c=
[
5 2

]>
(8.7)

subject to constraints

0≤ G1 ≤ 10 (8.8)

−5≤ G2 ≤ 15 (8.9)

4G1 + G2 ≤ 40 (8.10)

G1 + 3G2 ≤ 35 (8.11)

−8G1 − G2 ≥−75. (8.12)

First, load some Python packages.

from scipy.optimize import linprog
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Ecoding the Problem Before we can use linprog, we must first encode equa-
tions (8.6) and (8.8) into a form linprog will recognize. We begin with 5 , which
we can write as c · x with the coefficients of c as follows.

1. Another Python package pulp (PuLP) is probably more popular for linear programming; however,
we choose scipy.optimize because it has applications beyond linear programming.

https://math.ricopic.one/mt
https://math.ricopic.one/mt
https://pypi.org/project/PuLP/

Optimization 173

c = [-5, -2] # negative to find max

We’ve negated each constant because linprog minimizes 5 and we want to
maximize 5 . Now let’s encode the inequality constraints. We will write the left-
hand side coefficients in the matrix � and the right-hand-side values in vector a
such that

�x ≤ a. (8.13)

Notice that one of our constraint inequalities is ≥ instead of ≤. We can flip this
by multiplying the inequality by −1. We use simple lists to encode � and a.

A = [
[4, 1],
[1, 3],
[8, 1]

]
a = [40, 35, 75]

Now we need to define the lower l and upper u bounds of x. The function
linprog expects these to be in a single list of lower- and upper-bounds of each
G8 .

lu = [
(0, 10),
(-5,15),

]

We want to keep track of each step linprog takes. We can access these by
defining a function callback, to be passed to linprog.

x = [] # for storing the steps
def callback(res): # called at each step

global x
print(f"nit = {res.nit}, x_k = {res.x}")
x.append(res.x.copy()) # store

Now we need to call linprog. We don’t have any equality constraints, so we
need only use the keyword arguments A_ub=A and b_ub=a. For demonstration
purposes, we tell it to use the 'simplex' method, which is not as good as its
other methods, which use better algorithms based on the simplex.

174 Chapter 8

res = linprog(
c,
A_ub=A,
b_ub=a,
bounds=lu,
method='simplex',
callback=callback

)
x = np.array(x)

nit = 0, x_k = [0. -5.]
nit = 1, x_k = [10. -5.]
nit = 2, x_k = [8.75 5.]
nit = 3, x_k = [7.72727273 9.09090909]
nit = 4, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]

So the optimal solution (x , 5 (x)) is as follows.
print(f"optimum x: {res.x}")
print(f"optimum f(x): {-res.fun}")

optimum x: [7.72727273 9.09090909]
optimum f(x): 56.81818181818182

The last point was repeated

• Once because there was no adjacent vertex with greater 5 (x) and
• Twice because the algorithm calls callback twice on the last step.

Plotting When the solution space is in R2, it is helpful to graphically represent
the solution space, constraints, and the progression of the algorithm. We begin
by defining the inequality lines from � and a over the bounds of G1.

n = len(c) # number of variables x
m = np.shape(A)[0] # number of inequality constraints
x2 = np.empty([m,2])
for i in range(0,m):
x2[i,:] = -A[i][0]/A[i][1]*np.array(lu[0]) + a[i]/A[i][1]

Now we plot a contour plot of 5 over the bounds of G1 and G2 and overlay the
inequality constraints and the steps of the algorithm stored in x.

Optimization 175

lu_array = np.array(lu)
fig, ax = plt.subplots()
mpl.rcParams['lines.linewidth'] = 3
contour plot
X1 = np.linspace(*lu_array[0],100)
X2 = np.linspace(*lu_array[1],100)
X1, X2 = np.meshgrid(X1,X2)
F2 = -c[0]*X1 + -c[1]*X2 # negative because max hack
con = ax.contourf(X1,X2,F2)
cbar = fig.colorbar(con,ax=ax)
cbar.ax.set_ylabel('objective function')
bounds on x
un = np.array([1,1])
opts = {'c':'w','label':None,'linewidth':6}
plt.plot(lu_array[0],lu_array[1,0]*un,**opts)
plt.plot(lu_array[0],lu_array[1,1]*un,**opts)
plt.plot(lu_array[0,0]*un,lu_array[1],**opts)
plt.plot(lu_array[0,1]*un,lu_array[1],**opts)
inequality constraints
for i in range(0,m):

p, = plt.plot(lu[0],x2[i,:],c='w')
p.set_label('constraint')
steps
plt.plot(

x[:,0], x[:,1], '-o', c='r',
clip_on=False, zorder=20, label='simplex'

)
plt.ylim(lu_array[1])
plt.xlabel('x_1')
plt.ylabel('x_2')
plt.legend()
plt.show()

176 Chapter 8

0 2 4 6 8 10
x1

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

x
2

constraint
simplex

15

0

15

30

45

60

75

90

ob
jec

tiv
e f

un
cti

on

Figure 8.3. Simplex method on 5 .

Optimization 177

8.4 Problems LINK
WM

Problem 8.1 LINKCHORTLE Consider the function 5 :R2→R, defined as
5 (x)= cos(G1 − 4G2 + 2) sin(G2

1/4− G2
2/3+ 4) (8.14)

Use the method of Barzilai and Borwein (1988) starting at x0 = (1, 1) to find a
minimum of the function.

Problem 8.2 LINKCUMMERBUND Consider the functions (a) 51 :R2→R and (b) 52 :R2→
R defined as

51(x)= 4(G1 − 16)2 + (G2 + 64)2 + G1 sin2 G1 (8.15)

52(x)=
1
2
x ·�x − b · x (8.16)

where

�=

[
5 0
0 15

]
and (8.17a)

1 =
[
−2 1

]>
. (8.17b)

Use themethod of Barzilai and Borwein (1988) starting at some x0 to find aminimum
of each function.

Problem 8.3 LINKConsider the function 5 :R2→R defined as

5 (x)= sin G1 + cos G2 +
√
(G1 − 2)2 + (G2 + 1)2. (8.18)

Use the gradient descent method of Barzilai and Borwein (1988) with a step size

of) = 10−8 starting at (a) x0 =
[
0 0

]>
and (b) x′0 =

[
2 0

]>
to find minima of 5 . (c)

Explain why the two minima are different.

Problem 8.4 LINKMELTY Maximize the objective function

5 (x)= c · x (8.19a)

for x ∈R3 and

c=
[
3 −8 1

]>
(8.19b)

https://math.ricopic.one/wm
https://math.ricopic.one/wm
https://math.ricopic.one/chortle
https://math.ricopic.one/cummerbund
https://math.ricopic.one/
https://math.ricopic.one/melty

