
180 Chapter 9

For a good introduction to nonlinear dynamics, see (Strogatz and Dichter 2016).
A more engineer-oriented introduction is (Kolk and Lerman 1993).

9.1 Nonlinear State-Space Models LINK
G6

A state-space model has the general form

dx
dC

= f (x , u , C) (9.1)

y= g(x , u , C) (9.2)

where f and g are vector-valued functions that depend on the system.Nonlinear
state-space models are those for which f is a nonlinear functional of either x or
u. For instance, a state variable G1 might appear as G2

1 or two state variables might
combine as G1G2 or an input D1 might enter the equations as log D1.

9.1.1 Autonomous and Nonautonomous Systems

An autonomous system is one for which f (x), with neither time nor input appearing
explicitly. A nonautonomous system is one for which either C or u do appear
explicitly in f . It turns out that we can always write nonautonomous systems as
autonomous by substituting in u(C) and introducing an extra state variable for C
(Strogatz and Dichter 2016).
Therefore, without loss of generality, we will focus on ways of analyzing

autonomous systems.

9.1.2 Equilibrium

An equilibrium state (also called a stationary point) x is one for which dx/dC = 0. In
most cases, this occurs only when the input u is a constant u and, for time-varying
systems, at a given time C. For autonomous systems, equilibrium occurs when the
following holds:

f (x)= 0.
This is a system of nonlinear algebraic equations, which can be challenging to solve
for x. However, frequently, several solutions—that is, equilibrium states—do exist.

9.2 Nonlinear System Characteristics LINK
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Characterizing nonlinear systems can be challenging without the
tools developed for linear system characterization. However, there
are ways of characterizing nonlinear systems, and we’ll here explore a few.
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