
180 Chapter 9

For a good introduction to nonlinear dynamics, see (Strogatz and Dichter 2016).
A more engineer-oriented introduction is (Kolk and Lerman 1993).

9.1 Nonlinear State-Space Models LINK
G6

A state-space model has the general form

dx
dC

= f (x , u , C) (9.1)

y= g(x , u , C) (9.2)

where f and g are vector-valued functions that depend on the system.Nonlinear
state-space models are those for which f is a nonlinear functional of either x or
u. For instance, a state variable G1 might appear as G2

1 or two state variables might
combine as G1G2 or an input D1 might enter the equations as log D1.

9.1.1 Autonomous and Nonautonomous Systems

An autonomous system is one for which f (x), with neither time nor input appearing
explicitly. A nonautonomous system is one for which either C or u do appear
explicitly in f . It turns out that we can always write nonautonomous systems as
autonomous by substituting in u(C) and introducing an extra state variable for C
(Strogatz and Dichter 2016).
Therefore, without loss of generality, we will focus on ways of analyzing

autonomous systems.

9.1.2 Equilibrium

An equilibrium state (also called a stationary point) x is one for which dx/dC = 0. In
most cases, this occurs only when the input u is a constant u and, for time-varying
systems, at a given time C. For autonomous systems, equilibrium occurs when the
following holds:

f (x)= 0.
This is a system of nonlinear algebraic equations, which can be challenging to solve
for x. However, frequently, several solutions—that is, equilibrium states—do exist.

9.2 Nonlinear System Characteristics LINK
R2

Characterizing nonlinear systems can be challenging without the
tools developed for linear system characterization. However, there
are ways of characterizing nonlinear systems, and we’ll here explore a few.

https://math.ricopic.one/g6
https://math.ricopic.one/g6
https://math.ricopic.one/r2
https://math.ricopic.one/r2


Nonlinear Analysis 181

9.2.1 Those In-Common with Linear Systems

As with linear systems, the system order is either the number of state-variables
required to describe the system or, equivalently, the highest-order derivative in a
single scalar differential equation describing the system.
Similarly, nonlinear systems can have state variables that depend on time alone or

those that also depend on space (or some other independent variable). The former
lead to ordinary differential equations (ODEs) and the latter to partial differential
equations (PDEs).
Equilibrium was already considered in section 9.1.2.

9.2.2 Stability

In terms of system performance, perhaps no other criterion is as important as
stability.

Definition 9.1

If x is perturbed from an equilibrium state x, the response x(C) can:
1. asymptotically return to x (asymptotically stable),
2. diverge from x (unstable), or
3. remain perturned or oscillate about xwith a constant amplitude (marginally

stable).

Notice that this definition is actually local: stability in the neighborhood of one
equilibrium may not be the same as in the neighborhood of another.
Other than nonlinear systems’ lack of linear systems’ eigenvalues, poles, and

roots of the characteristic equation fromwhich to compute it, the primary difference
between the stability of linear and nonlinear systems is that nonlinear system
stability is often difficult to establish globally. Using a linear system’s eigenvalues,
it is straightforward to establish stable, unstable, and marginally stable subspaces
of state-space (via transforming to an eigenvector basis). For nonlinear systems, no
such method exists. However, we are not without tools to explore nonlinear system
stability. One mathematical tool to consider is Lyapunov stability theory, which is
beyond the scope of this course, but has good treatments in (Brogan 1991; Ch. 10)
and (Choukchou-Braham et al. 2013; App. A).



182 Chapter 9

9.2.3 Qualities of Equilibria

Equilibria (i.e. stationary points) come in a variety of qualities. It is instructive to
consider the first-order differential equation in state variable G with real constant A:

G′= AG − G3.

If we plot G′ versus G for different values of A, we obtain the plots of figure 9.1.

G

G′

(a) A < 0

G

G′

(b) A = 0

G

G′

(c) A > 0

Figure 9.1. Plots of G′ versus G for section 9.2.3.

By definition, equilibria occur when G′= 0, so the G-axis crossings of figure 9.1 are
equilibria. The blue arrows on the G-axis show the direction (sign) of state change G′,
quantified by the plots. For both (a) and (b), only one equilibrium exists: G = 0. Note
that the blue arrows in both plots point toward the equilibrium. In such cases—that
is, when a neighborhood exists around an equilibrium for which state changes point
toward the equilibrium—the equilibrium is called an attractor or sink. Note that
attractors are stable.
Now consider (c) of figure 9.1. When A > 0, three equilibria emerge. This change

of the number of equilibria with the changing of a parameter is called a bifurcation.
A plot of bifurcations versus the parameter is called a bifurcation diagram. The
G = 0 equilibrium now has arrows that point away from it. Such an equilibrium is
called a repeller or source and is unstable. The other two equilibria here are (stable)
attractors. Consider a very small initial condition G(0)= &. If & > 0, the repeller
pushes away G and the positive attractor pulls G to itself. Conversely, if & < 0, the
repeller again pushes away G and the negative attractor pulls G to itself.
Another type of equilibrium is called the saddle: one which acts as an attractor

along some lines and as a repeller along others. Wewill see this type in the following
example.



Nonlinear Analysis 183

Example 9.1

Consider the dynamical equation

G′= G2 + A
with A a real constant. Sketch G′ vs G for negative, zero, and positive A. Identify
and classify each of the equilibria.

TODO

9.3 Simulating Nonlinear Systems

Example 9.2 LINK
PW

Simulate a nonlinear unicycle in Python.

First, load some Python packages.
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

The state equation can be encoded via the following function f.

def f(t, x, u, c):
dxdt = [

x[3]*np.cos(x[2]),
x[3]*np.sin(x[2]),
x[4],
1/c[0] * u(t)[0],
1/c[1] * u(t)[1]

]
return dxdt

The input function u must also be defined.

def u(t):
return [

15*(1+np.cos(t)),
25*np.sin(3*t)

]

Define time spans, initial values, and constants

tspan = np.linspace(0, 50, 300)
xinit = [0,0,0,0,0]
mass = 10
inertia = 10
c = [mass,inertia]

https://math.ricopic.one/pw
https://math.ricopic.one/pw

