
four Fourier and orthogonality trans Fourier transform p. 1

1. Python code in this section was generated from a Jupyter notebook
named fourier_series_to_transform.ipynbwith a python3 kernel.

four.trans Fourier transform

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex

Let’s consider a periodic function fwith period

T (T). Each period, the function has a triangular
pulse of width δ (pulse_width) and height δ/2.

period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function f in the time domain.

Let’s begin by defining f.

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to

plot f.

N = 201 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

p = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # display here

four Fourier and orthogonality trans Fourier transform p. 2

For δ = 2 and T ∈ [5, 15, 25], the left-hand column

of Fig. trans.1 shows two triangle pulses for

each period T .

Consider the following argument. Just as a

Fourier series is a frequency domain

representation of a periodic signal, a Fourier

transform is a frequency domain representation

of an aperiodic signal (we will rigorously define

it in a moment). The Fourier series components

will have an analog, then, in the Fourier

transform. Recall that they can be computed by

integrating over a period of the signal. If we

increase that period infinitely, the function is

effectively aperiodic. The result (within a

scaling factor) will be the Fourier transform

analog of the Fourier series components.

Let us approach this understanding by actually

computing the Fourier series components for

increasing period T using ??. We’ll use sympy to
compute the Fourier series cosine and sine

components an and bn for component n (n) and
period T (T).

sp.var('x,a_0,a_n,b_n',real=True)
sp.var('delta,T',positive=True)
sp.var('n',nonnegative=True)
a0 = 2/T*sp.integrate(
(delta/2-sp.Abs(x)),
(x,-delta/2,delta/2) # otherwise zero
).simplify()
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
display(sp.Eq(a_n,an),sp.Eq(b_n,bn))

an =


T
(
1−cos

(
πδn
T

))
π2n2 for n 6= 0

δ2

2T otherwise
bn = 0

Furthermore, let us compute the harmonic

amplitude

four Fourier and orthogonality trans Fourier transform p. 3

(f_harmonic_amplitude):

Cn =
√
a2n + b2n (1)

which we have also scaled by a factor T/δ in

order to plot it with a convenient scale.

sp.var('C_n',positive=True)
cn = sp.sqrt(an**2+bn**2)
display(sp.Eq(C_n,cn))

Cn =


T
∣∣cos

(
πδn
T

)
−1

∣∣
π2n2 for n 6= 0

δ2

2T otherwise

Now we lambdify the symbolic expression for a

numpy function.

cn_f = sp.lambdify((n,T,delta),cn)

Now we can plot.

omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*period/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/period
p = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, period/pulse_width*cn_f(n_a,period,pulse_width),
linefmt='b-', markerfmt='bo', basefmt='r-',
use_line_collection=True,

)
plt.xlabel('frequency ω (rad/s)')
plt.xlim([0,omega_max])
plt.ylim([0,pulse_width/2])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # show here

The line spectra are shown in the right-hand

column of Fig. trans.1. Note that with our

chosen scaling, as T increases, the line spectra

reveal a distinct waveform.

Let F be the continuous function of angular

frequency ω

F(ω) =
δ

2
· sin

2(ωδ/4)

(ωδ/4)2
. (2)

First, we plot it.

four Fourier and orthogonality trans Fourier transform p. 4

amplitude CnT/δ

δ
2

T = 5 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 15 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 25 s

δ/2

time (s)

2 4 6 8 10 12

δ/2

frequency ω (rad/s)

Figure trans.1: triangle pulse trains (left column) with longer periods, descending, and their corresponding
line spectra (right column), scaled for convenient comparison.

F = lambda w: pulse_width/2* \
np.sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency ω (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

0 2 4 6 8 10 12

frequency ω (rad/s)

0

δ/2

Figure trans.2: F(ω), our mysterious Fourier series
amplitude analog.

Let’s consider the plot in Fig. trans.2 of F. It’s

obviously the function emerging in Fig. trans.1

four Fourier and orthogonality trans Fourier transform p. 5

from increasing the period of our pulse train.

Now we are ready to define the Fourier

transform and its inverse.

Definition four.4: Fourier transforms:

trigonometric form

Fourier transform (analysis):

A(ω) =

ˆ ∞
−∞ y(t) cos(ωt)dt (3)

B(ω) =

ˆ ∞
−∞ y(t) sin(ωt)dt. (4)

Inverse Fourier transform (synthesis):

y(t) =
1

2π

ˆ ∞
−∞A(ω) cos(ωt)dω+

1

2π

ˆ ∞
−∞ B(ω) sin(ωt)dω.

(5)

Definition four.5: Fourier transforms:

complex form

Fourier transform F (analysis):

F(y(t)) = Y(ω) =

ˆ ∞
−∞ y(t)e−jωtdt. (6)

Inverse Fourier transform F−1 (synthesis):

F−1(Y(ω)) = y(t) =
1

2π

ˆ ∞
−∞ Y(ω)ejωtdω. (7)

So now we have defined the Fourier transform.

There are many applications, including solving

differential equations and frequency domain

representations—called spectra—of time domain

functions.

There is a striking similarity between the

Fourier transform and the Laplace transform,

with which you are already acquainted. In fact,

the Fourier transform is a special case of a

Laplace transform with Laplace transform

variable s = jω instead of having some real

component. Both transforms convert

differential equations to algebraic equations,

which can be solved and inversely transformed

four Fourier and orthogonality trans Fourier transform p. 6

to find time-domain solutions. The Laplace

transform is especially important to use when

an input function to a differential equation is not

absolutely integrable and the Fourier transform

is undefined (for example, our definition will

yield a transform for neither the unit step nor

the unit ramp functions). However, the Laplace

transform is also preferred for initial value

problems due to its convenient way of handling

them. The two transforms are equally useful for

solving steady state problems. Although the

Laplace transform has many advantages, for

spectral considerations, the Fourier transform is

the only game in town.

A table of Fourier transforms and their

properties can be found in Appendix B.02.

Example four.trans-1 re: a Fourier transform

Consider the aperiodic signal y(t) = us(t)e
−at

with us the unit step function and a > 0. The

signal is plotted below. Derive the complex

frequency spectrum and plot its magnitude and

phase.

−2 −1 0 1 2 3 4 5
0

0.5

1

t

y
(t
)

Figure trans.3: an aperiodic signal.

The signal is aperiodic, so the Fourier transform

can be computed from Eq. 6:

Y(ω) =

ˆ ∞
−∞ y(t)ejωtdt

=

ˆ ∞
−∞ us(t)e−atejωtdt (def. of y)

=

ˆ ∞
0

e−atejωtdt (us effect)

=

ˆ ∞
0

e(−a+jω)tdt (multiply)

=
1

−a+ jω
e(−a+jω)t

∣∣∣∣∞
0

dt

(antiderivative)

=
1

−a+ jω

(
lim
t→∞ e(−a+jω)t − e0

)
(evaluate)

four Fourier and orthogonality general Fourier transform p. 7

=
1

−a+ jω

(
lim
t→∞ e−atejωt − 1

)
(arrange)

=
1

−a+ jω

(
(0)(complex with mag 6 1) − 1

)
(limit)

=
−1

−a+ jω
(consequence)

=
1

a− jω

=
a+ jω

a+ jω
· 1

a− jω
(rationalize)

=
a+ jω

a2 +ω2
.

0

0.5

1

|Y
(ω

)|

−10 −5 0 5 10

−1

0

1

ω

∠
Y
(ω

)

Figure trans.4: the magnitude and phase of the
Fourier transform.

The magnitude and phase of this complex

function are straightforward to compute:

|Y(ω)| =
√

Re(Y(ω))2 + Im(Y(ω))2

=
1

a2 +ω2

√
a2 +ω2

=
1√

a2 +ω2

∠Y(ω) = arctan(ω/a).

Now we can plot these functions of ω. Setting

a = 1 (arbitrarily), we obtain the plots of

Fig. trans.4.

