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01

Theoretical foundations

Measurement is fundamental to science and technology. It may seem at
first to be simple because it is familiar. A length, a duration, a mass—these
types of quantities are the building blocks of our scientific conception of
the world. To know their actuality in a given instance is the primary aim of
measurement.

There are several manners in which philosophers, scientists, and other
thinkers have tried to understand measurement. Rather than rushing ahead
with our intuitive understanding, we will slow down and consider these
theoretical foundations of measurement.1

1A great summary of the theories that follow can be found in Tal (2017).
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Lecture 01.01 Mathematical measurement theory

Mathematical measurement theory (sometimes just “measurement
theory”) concerns itself with how relations among mathematical objects
(e.g. numbers) can represent relations among qualities of empirical objects
(e.g. length). For instance, summing numbers is analogous to how the
quality of length of a composite object is related to the quality of length of
each of the object’s constituents, as is illustrated in Figure 01.1.

But there’s subtlety here that’s best considered with precise language.
Let’s consider some fundamental definitions of measurement theory.

01.01.1 Quality, quantity, magnitude, and scale

When trying to describe what we are doing when we measure, there are
certain terms are seemingly unavoidable. Therefore, it’s worth considering
some precise definitions of them. In the following, let’s take the term objectobject

to mean the object of measurement.

Definition 01.01.1: quality

The quality of an object is the manner in which it interacts. It is
the totality of its properties, which are aspects of the way the object
interacts. (Spirkin, 1983)

We can think of the properties that constitute the quality of an object
as sets to which a given object belongs or not, like “heavy” or “round.”
Immediately, however, we become suspicious that a real object can belong
to such a set so completely or not. Fuzzy set theory allows members of afuzzy set theory

set to belong to a certain degree (Ross, 2010). Applying fuzzy set theory to
measurement theory is beyond the scope of this text, but suffice it to say that
the fuzziness of membership suggests a blurring of the boundary between
quality and our next definition, quantity.

Figure 01.1: mathematical measurement theory explores the correspondence between
mathematical objects like numbers and empirical qualities like lengths.

6 3 September 2018, 17:29:26 01.01 3 1
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Definition 01.01.2: quantity

The quantity of an object is the amount of that which comprises it.
The quantity of a finite collection of objects is the number of them.
(Spirkin, 1983)

Note that we are already beginning to use mathematical analogy in
our definition of quantity when we use a number to represent quantity.
Quantity can be continuous or discrete. In the former case, it is often
represented by a real number; in the latter, it is often represented by an real number

integer. integer

We have used the term “amount” in the definition of the quantity of
an object. This is a bit of a swindle, considering we have not yet defined
this term. In fact, “amount” is not the usual scientific term. Rather, the
term physical magnitude has emerged from physics (Hall, 2016). It is here physical magnitude

that we bump against the limitation of language to define fundamental
phenomena: physical magnitude is typically defined as a that which can be
represented by a number about an object. Thus, we have interdependent
definitions of quantity and physical magnitude when describing an object.
We use both terms interchangeably.

“I got a 20 on the exam.” Without a measurement scale, there is no
measurement.

Definition 01.01.3: measurement scale

A measurement scale is a mapping of quantities and qualities of an
object to mathematical objects for representation. (Tal, 2017)

Measurement theory is hardly homogeneous, but we can think of it as
being primarily comprised of considerations of (1) the nature of the objects
of measurement and (2) the ways in which the correspondance between
an object and its measure can be established. These are considered in the
following sections ( 01.01.2, 01.01.3, and 01.01.4).

01.01.2 The nature of measurement objects

Every theory assumes an ontology (in the sense of metaphysics): a theoreti- ontology

cal understanding of the nature of being. Unfortunately, we rarely consider
ontology and instead thrash about with some assumed ontology—for there
is no theory that does not have at least an implicit ontology. We will pause
at ontology for just a moment before thrashing on.

7 3 September 2018, 17:29:26 01.01 3 2
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There are several competing understandings of the ontological status of
the objects of measurement. Tal (2017) describes them as

• concrete individual objects,
• qualitative observations of concrete individual objects,
• abstract representations of individual objets, and
• universal properties of objects.

This is especially important to realist theories of measurement, but is
important to consider in all measurement theories.

01.01.3 Establishing scales

So, under mathematical measurement theory, quantities and qualities of an
object are said to correspond in some way to mathematical objects. But how
do we decide on the mathematical objects (scale)? What criteria are there
for determining the efficacy of the mathematical objects?

This is another universal aspect of measurement theories: establishing
the way in which scales can be properly established. It is a central
consideration of most measurement theories.

01.01.4 Intrinsic and extrinsic quantities
intensive quantity

Intensive quantities are those that represent properties of the constitutive
substance of an object. Conversely, extensive quantities are those that areextensive quantity

unique to each object.2

The quality of quantities (lol) to admit representation by a number leads
to a simple manner in which to define the difference between an intrinsic
and an extrinsic quantity: if an attribute of an object can be represented
by the addition of numbers, it is an extrinsic quantity; otherwise, it is an
intrinsic quality.3 For instance, weight is best represented by a quantity
because combining two objects with weights represented by w1 and w2
gives a composite object with weight w1 + w2. Similarly, the densities of
two objects ρ1 and ρ2, if the objects are combined, are not.

2There’s some ambiguity here, but this is approximately how the terms are used in the
study of thermodynamics.

3The idea for this comes from (Campbell, 1920, p. 267), but his concepts of quantity and
quality seem conflated with what we have called intrinsic and extrinsic quantities.
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01.01.5 Fundamental and derived magnitudes

Early theories (Campbell, 1920) made the additivity and lack thereof of
magnitudes the crucial aspect of a distinction between two types of physical
magnitude: fundamental and derived. fundamental

magnitude
derived magnitude

Later theories distinguished between these two types of magnitude in
the following way:

• fundamental magnitudes are those that can be measured directly and
• derived magnitudes are those that must be computed from a definition

that depends on fundamental magnitudes.

For instance, density is measured by measuring both mass and volume of
an object, then dividing them—making density a derived magnitude.

This means there is nothing intrinsic about the difference between a
fundamental and a derived quantity; rather, a magnitude that is derived
now may become fundamental if a method for measuring it directly is
developed.

Example 01.01-1 fundamental versus derived

Of the following magnitudes, which is fundamental and which is
derived?

1. resistance
2. length
3. mass
4. weight

There is an ambiguity here that I want to merely suggest and leave
open. Let us take mass, for instance. We say it can be compared directly to
another mass via a balance and therefore it is fundamental. However, how
do we determine when a balance is balanced? By measuring, for instance,
the angle of the balancing arm, which is surely never zero. It can only be
“small enough.” This hints at an issue with our conception of fundamental
and derived quantities.
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01.01.6 Classification of scales

Measurement scales have been classified by the types of transformation to
which they are invariant without loss of empirical information. We will
consider the following scales originated by Stevens (Tal, 2017; Robert, 1985).

nominal scales Nominal scales are those that are invariant to one-to-one
substitution. Those that have no order are quintessential. For
instance, gender or concave/convex (innie/outie) navels are nominal
scales.

ordinal scales Ordinal scales are those that are invariant to monotonic,
increasing transformations. Those that have a specific order are
quintessential. For instance, one could feel terribly, poorly, or meh.
Another example is physical hardness.

interval scales Interval scales are those that are invariant to positive linear
transformation. Celcius and Farenheit scales for temperatures are
related by just such a transformation

TF =
9

5
· TC + 32 (01.1)

without a loss in emperical information.
ratio scales Ratio scales are those that are invariant to multiplication by

positive numbers. For instance, length can be represented in meters
or kilometers via multiplication by a constant. Kelvin, unlike Celcius
and Farenheit, is a ratio scale if negative Kelvin temperatures are
excluded from consideration. Whenever a scale admits positive
multiplication and excludes negative values (i.e. has an “absolute
zero”), it is considered to be a ratio scale.

Example 01.01-2 scale classification

Classify the following measurement scales.

1. mass in kg
2. air quality index
3. numbered uniforms 1-99
4. time interval in sec
5. calendar time (e.g. 2017)

10 3 September 2018, 17:29:26 01.01 3 5
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01.01.7 Representational theory

The Representational Theory of Measurement (RTM) is the most generally ac- Representational
Theory of
Measurement

cepted mathematical measurement theory. It combines the considerations
above—the nature of measurement objects and the classification of scales—
to define measurement as “the construction of mappings from empirical
relational structures into numerical relational structures” Tal (2017).

In this theory, measurement scales are homomorphisms (many-to-one homomorphism

mappings) from empirical relational structures to numerical relational
structures.

11 3 September 2018, 17:29:26 01.01 3 6
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Lecture 01.02 Operationalism, conventionalism, and re-
alism

Mathematical measurement theory developed alongside another dimen-
sion of the study of measurement. This dimension is mostly concerned
with the “reality” and meaning of measurement.

01.02.1 Operationalism

Most operationalists hold that the terms we apply to quantities—for
instance, “duration” or “length”—depend essentially on the operations we
use to measure them. In fact, one operationalist goes so far as to claim that

we mean by any concept nothing more than a set of operations; the
concept is synonymous with the corresponding set of operations. (Tal,
2017)

Implications include that using two different instruments—say a ruler and
calipers—to measure what we would typically consider to be the “length”
of the same object would, in fact, need to be described as two different
quantity-terms such as “length-ruler” and “length-calipers.”logical positivism

Logical positivism—a now-defunct philosophical school popular in the
1920s and 1930s in Europe, the central thesis of which is the theory that only
those statements that are empirically verifiable are meaningful4—initially
embraced this view. However, as with positivism, operationalism was
found to have many issues, including (Tal, 2017):

• operationalism seems to imply that a measurement is automatically
reliable,

• meaning seems to apply beyond the strict criteria of operationalism,
• operational definitions cannot be applied to some useful theoretical

concepts, and
• the concept of operation itself is ambiguous.

For these reasons and others, operationalism was outpaced by the
approach we turn to next.

4This theory is called verificationism and is still to be found in public discourse. This is
unfortunate because philsophers have long since abandoned it along with positivism.
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01.02.2 Conventionalism

A sort of operationalism-lite, conventionalism says that many of the quan-
tities we define, such as temperature, are conventional. Ernst Mach, for
instance, claimed that there is no possible truth or falsity to the question
of which thermometric fluid expands more uniformly because temperature
intervals are defined in terms of the expansion of a thermometric fluid (Tal,
2017). This is called the principle of coordination. principle of

coordinationLogical positivists Hans Reichenbach and Rudolf Carnap used conven-
tionalism alongside their verificationism (unverifiable statements are nei-
ther true nor false). A coordinative definition of an unverifiable statement coordinative

definitionlike “a meter is the length of a standard rod in Paris” (Fieser and Dowden,
2017)—this is actually how the SI system used to define a meter. (Now the
SI uses the definition: “the length of the path travelled by light in vacuum
during a time interval of 1/299, 792, 458 of a second” (The International Sys-
tem of Units, 1984).) These sorts of conventional definitions were used to
supplement explicit definitions.

01.02.3 Realism

Most realists argue that, independent of convention or belief or measure-
ment instrument—that is, objectively—objects have some real measureable
properties. These properies can include those that are psychologically mea-
sureable (i.e. some subjective experiences can be measured). They are typi-
cally considered to be estimated by a measurement process. estimation

We find that ordering objects by length is a very repeatable process.
Similarly, we find that concatenating objects “lengthwise” yields a repeat-
able composite length, regardless of the ordering. Realism posits that the
best explanation of these phenomena is that some objects have the property
that they can relate to other objects with the relations “longer than” and “is
the sum of.”

Note that this means that lengths share a structure with real numbers,
which can be related to each other by the relations “larger than” and “is
the sum of.” Some realists even go so far as to claim that we can define
numbers themselves as ratios of quantities.

It is difficult to describe how the concepts of measurement accuracy
and error without some form of realism (looking at you, operationalists
and conventionalists). For the realist, the error is easy to define: it’s the
difference between the estimate and the real quantity.

13 3 September 2018, 17:29:26 01.02 3 2
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Mathematical measurement theory is generally palatable to realists.
However, measurement theorists have largely ignored the realists (Tal,
2017).

Example 01.02-1 which ism?

Decide which of school of thought might affirm each statement.

1. “There is no such thing as an objective property, only measure-
ment processes.”

2. “Measuring is estimating.”
3. “A watch and an atomic clock measure different quantities.”
4. “It is customary to define pressure as corresponding height of

a column of mercury, which is precisely what pressure is.”
5. “Whereof one cannot speak, thereof one must be silent.”
6. “Do or do not, there is no try.”

14 3 September 2018, 17:29:26 01.02 3 3
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Lecture 01.03 Information-theoretic descriptions of
measurement5

information theory
Information theory studies information quantification, storage, and commu-
nication. Liberal use of it is made by metrology: the study measurement and metrology

measurement applications.6 A measurement instrument can be considered
an “information machine” that takes an input state of an object and yields
an output reading.

Information theory provides metrologists with a mathematical appara-
tus for computing the amount of information in a given information chan-
nel, typically in terms of probabilities. This same apparatus can be used for
measurement, where we consider measurement to be the communication
of information from the state of the measurement object to the measure-
ment reading. The analogy between information transmission and mea-
surement is incomplete in that information encoded and transmitted is (in
theory) known by the encoder, whereas information the object “encodes”
and “transmits” via the measurement instrument is typically considered
unknowable any other way.

This is an active area of research. A related, recent proposal is one by
Bas van Fraassen that posits two levels:

• a physical level at which the instrument yields a reading of the state of
an object and

• an abstract level in which measurement reduces the region in which
a mathematical representation of the physical state exists in a state
space.

5See Tal (2017) for more information.
6Metrologists work for places like the US National Institute of Standards and Technol-

ogy (NIST), research laboratories that develop precise measurements, and companies that
develop precision instruments.
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Lecture 01.04 Model-based descriptions of measure-
ment7

Model-based descriptions of measurement frame measurement as

1. a concrete process of measurement object, measurement instrument,
and their environment and

2. the construction of a theoretical and/or statistical model of the
concrete process.

Correspondance between the measurement and the model are the primary
consideration for the construction of models.

Two types of measurements are described:
instrument
indications 1. instrument indications or readings are the output of the concrete process

of measurement, such as the dial position on a pressure gauge;measurement
outcomes 2. measurement outcomes or results are knowlege claims about measure-

ment objects that usually include a statement of probability or uncer-
tainty, such as “the pressure in the tank is 50 ± 3 psi with 95% confi-
dence.”

Measurement outcomes are model-dependent and the uncertainty calcula-
tion depends on assumptions about the effectiveness of the model, includ-
ing the statistical models of uncertainty.

The primary requirement of model-based descriptions of measurement
is twofold:

1. coherence of the assumptions of the model and background theory
and

2. consistency across instruments and environments.

7See Tal (2017) for much more information.
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Lecture 01.05 Epistemology of measurement
epistemology

Epistemology is the study of knowledge and how it is acquired. Epistemol-
ogy of measurement is the study of how knowledge is acquired through
measurement. The model-based description of measurement, above, is
closely associated with this study.

One of the most interesting aspects of this work is the way it both
questions the validity of and offers an alternative to the intuitive realism
about measurement that suggests that there is a real quantity independent
of the measurement and that measurement error is the difference between
that quantity and the estimate of the quantity.

01.05.1 Questioning realism

Here are four ways of questioning our intuitive realism.

01.05.1.1 The unknowable real

A first assault on realism is the following. The exact real value of a quantity
cannot be known (at least for continuous scales). This is generally accepted.
Therefore, the error between the measurement and the real value cannot
be known. We are left to compare (inherently inaccurate) measurements
with each other, using statistical techniques. Even if measurements are
made with different techniques and averaged, we cannot know all these
techniques don’t share a common systematic error.

01.05.1.2 Circles are a thing

Another assault on realism can be made by emphasizing the fact that when
measurements take place, some sort of idealizing model of the concrete
situation is implicit. For instance, what would it mean to measure measure
the temperature of an object without an idealized model of temperature
making fluid volumes expand? Ok, instead, could we start from the
theoretical model? What, then, would “temperature” mean? There is
a circularity the confounds us at the bottom; however, this circularity is
apparently non-vicious when considered from the historical point-of-view, non-vicious

circularitywhich we will now consider.8

8The conventionalists tried to take a “way out” of the circle by attempting to arbitrarily
fix meaning with “coordinative definitions.” The historical point-of-view questions the
validity of this given the fact that definitions seem to require revision upon the development
of sufficiently accurate measurements. That is, the definition of a quantity cannot remain

17 3 September 2018, 17:29:26 01.05 3 1
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01.05.1.3 History teaching us a thing

Thomas Kuhn, among others, pointed out that the idea that the
hypothesize→ measure → interpret → judge “scientific method” is
rarely actual for significant scientific progress. Instead, we refine our
measurements to the point that they expose a lack in our theory. The lack
becomes the focus, and is measured with greater and greater precision.
Finally, a new theory emerges that can explain the lack in the previous
theory’s explanatory power.

01.05.1.4 Bliss is ignorance

Finally, we call into question the very idea that a “real” value even makes
sense without a certain amount of (useful) pretending. What does it mean
to (say) measure the speed of light in a medium? We must, of course,
assume (and try to control) certain aspects of the medium that we know are
never completely the case, such as that it has uniform properties like density,
temperature, and pressure. Moreover, we are assuming a completely static,
repeatable measurement environment, while we all know perfectly well
that one “cannot step twice into the same stream.” (Tal, 2017)

These suggests a new understanding of the relationship between mea-
surement and theory.

01.05.2 A new paradigm

These critiques of realism lead us to an emerging model-based paradigm in
the epistemology of measurement. This view understands the limitations,
circularity, and ideality of measurement, yet forges a new path forward.
We might summarize this view as advocating something like the following
attitude toward the epistemology of measurement (Tal, 2017):

accuracy The accuracy of a measurement has been defined as its nearness
to the unknowable “real value.” Now we define it to be its “agreement
with values reasonably attributed to a quantity given available em-
pirical data and background knowledge.”

precision The precision of a measurement has been defined as the size of its
clustering (e.g. standard deviation). Now we define it to be a type of
inaccuracy from “uncontrolled variations” of indications.

static.
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On a higher level, we develop models and measure and refine the mod-
els and measure some more. That is, measurement refines theory and the-
ory refines measurement. Measurement processes inform theoretical models,
through which measurement results are interpreted. The interpretation re-
fines the model that inform the next generation of measurement processes.
Etc.

Embrace the circle as it embraces you.
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02

Signals

A signal “is a function that conveys information about the behavior or signal

attributes of some phenomenon” (Priemer, 1991).
We will primarily be considering electrical signals (e.g. voltage or current electrical signal

varying in time) and mechanical signals (e.g. velocity or force varying in mechanical signal

time).
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Lecture 02.01 Types of signals

There are many types of signals that will be encountered in engineering
analysis. This lecture surveys a few of the most common. Many of our
signals are functions of time t, and are presented as such here, but it is
possible to have other independent variables for a signal.

The primary distinction that we make among types of signals is between
those that are periodic and those that are aperiodic. Periodic signals repeat.periodic

aperiodic In maths, a signal v(t) is periodic if for all t and for some T ∈ R,

v(t+ T) = v(t). (02.1)

If a function satisfies this condition, it is periodic with period T . An
aperiodic function is one that is not periodic.

02.01.1 Sinusoidal signals

The familiar sine wave is the most popular periodic signal.

Equation 02.2 sinusoidal signal

We call A the amplitude,ω the angular frequency in rad/s, and φ the phaseamplitude
angular frequency

phase
in rad. We define the cyclic frequency f in Hz to be

cyclic frequency
f =

ω

2π
(02.3)

and the period to beperiod

T =
1

f
. (02.4)

Below is a sinusoidal signal with and without a phase shift φ.

22 3 September 2018, 17:29:26 02.01 3 1
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−T φ T

−A

A

A sin(ωt)

A sin(ωt+ φ)

x

v(x)

There are three common types of “amplitude” for sinusoids.

GOFA Good old-fashioned amplitude A is the amplitude we’ve described
already. peak-to-peak

amplitudeP2P Peak-to-peak amplitude App is twice the GOFA: App = 2A.
root mean square
amplitude

RMS Root mean square amplitude is conceptually like the “mean” amplitude
but is defined over the time interval [t1, t2] as

Arms =

(
1

t2 − t1

∫t2
t1

v(τ)2dτ

)1/2
. (02.5)

For a sinusoid, for time intervals that are multiples of the period, this
reduces to

Arms = A/
√
2. (02.6)

One must be careful to specify which is being used and be aware that
in some instances it is assumed to be “conventional.”

Finally, a sinusoid’s mean value is called the dc offset and is defined as dc offset

the integral over a period divided by a period:

v =
1

T

∫T/2
−T/2

v(t)dt. (02.7)

Many signals are approximately sinusoidal. For instance, ac electrical
power is sinusoidal, as is the motion of a pendulum.

02.01.2 Decibels

Although this is not a “type” of signal, it is worth mentioning decibels
alongside sinusoids. The decibel (dB) is a conventional logarithmic ratio decibel

of amplitudes.
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Equation 02.8 decibel

The “reference” amplitudeA0 is sometimes taken to be 1, but typically it
is some conventional quantity like 1 V for a voltage signal. In certain cases
like this, the abbreviation dB might be given some decoration, like dBV.

The decibel is sometimes expressed in terms of the ratio of the powers
of two signals, but we aren’t there yet.

02.01.3 Ramp and sawtooth

A ramp function is an aperiodic signal that increases linearly. A sawtoothramp
sawtooth function is a periodic signal that repeats a section of a ramp function.

Below, a sawtooth signal with amplitude A and period T is plotted.

T 2T

−A

A

24 3 September 2018, 17:29:26 02.01 3 3



Chapter 02 Signals Lecture 02.01 Types of signals

02.01.4 Triangle

A triangle function is a periodic signal with a section of a ramp followed by triangle

a negative section of the same ramp.
Below, a triangle signal with amplitude A and period T is plotted.

T 2T

−A

A

02.01.5 Square

A square signal is a periodic signal that switches between two constant square

values.
Below, a square signal with amplitude A and period T is plotted.

T 2T

−A

A
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Lecture 02.02 Fourier series

Fourier series are mathematical series that can represent a periodic signal
as a sum of sinusoids at different amplitudes and frequencies. They are
useful for solving for the response of a system to periodic inputs. However,
they are probably most important conceptually: they are our gateway to
thinking of signals in the frequency domain—that is, as functions of frequencyfrequency domain

(not time). To represent a function as a Fourier series is to analyze it as aFourier analysis

sum of sinusoids at different frequencies ωn and amplitudes and an. It’s
frequency spectrum is the functional representation of amplitudes an versusfrequency

spectrum frequency ωn.

Let’s begin with the definition.

Definition 02.02.1: Fourier series: trigonometric form

The Fourier analysis of a periodic function y(t) is, for n ∈ N0 and
period T ,

an =
2

T

∫T/2
−T/2

y(t) cos (2πnt/T)dt (02.9)

bn =
2

T

∫T/2
−T/2

y(t) sin (2πnt/T)dt. (02.10)

The Fourier synthesis of a periodic function y(t) with analysis compo-
nents aj and bj corresponding to ωj is

y(t) =
a0
2

+

∞∑
n=1

an cos(2πnt/T) + bn sin(2πnt/T). (02.11)

Let’s consider the complex form of the Fourier series, which is analo-
gous to Definition 02.02.
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Definition 02.02.2: Fourier series: complex form

The Fourier analysis of a periodic function y(t) is, for n ∈ N0 and
period T ,

c±n =
1

T

∫T/2
−T/2

y(t)e−j2πnt/Tdt. (02.12)

The Fourier synthesis of a periodic function y(t) with analysis compo-
nents cn corresponding to ωn is

y(t) =

∞∑
n=−∞ cne

j2πnt/T . (02.13)

We call the integer n a harmonic and the frequency associated with it harmonic

ωn = 2πn/T (02.14)

the harmonic frequency. There is a special name for the first harmonic (n = 1): harmonic
frequencythe fundamental frequency. It is called this because all other frequency
fundamental
frequency

components are integer multiples of it.
It is also possible to convert between the two representations above.

Definition 02.02.3: Fourier series: converting between forms

The complex Fourier analysis of a periodic function y(t) is, for n ∈ N0
and an and bn as defined above,

c±n =
1

2

(
a|n| ∓ jb|n|

)
(02.15)

The sinusoidal Fourier analysis of a periodic function y(t) is, for
n ∈ N0 and cn as defined above,

an = cn + c−n and (02.16)
bn = j (cn − c−n) . (02.17)

The harmonic amplitude is harmonic
amplitude

Cn =
√
a2n + b2n (02.18)

= 2
√
cnc−n. (02.19)
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A line spectrum is a graph of the harmonic amplitudes as a function of theline spectrum

harmonic frequencies.

The following illustration demonstrates how sinusoidal components
sum to represent a square wave. A line spectrum is also shown.

time

frequency

spectral amplitude
amplitude

Let us compute the associated spectral components in the following
example.

Example 02.02-1 Fourier series analysis: line spectrum

Compute the first five harmonic amplitudes that represent the line
spectrum for a square wave in the figure above.
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Lecture 02.03 Fourier transforms

The source for this lecture is in SageMath kernel Jupyter notebook. For more
information, see jupyter.org and sagemath.org.

See ricopic.one/measurement/notebooks for the source code notebook.
First, we import packages and all that. We use matplotlib for plotting
and numpy for numerics.

Let’s consider a periodic function f with period T (T). Each period, the
function has a triangular pulse of width δ (pulse_width) and height δ/2.

save_figures = False # true to save LaTeX figures
T = 35 # period
pulse_width = 2 # pulse width
f1(x) = pulse_width/2-abs(x) # first pulse
f2(x) = pulse_width/2-abs(x-T) # second pulse
omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*T/(2*pi)) # corresponding max harmonic

First, we plot the function f in the time domain. Using the SageMath
piecewise function due to its Fourier Series methods (used momentarily),
we define it and use matplotlib to plot it.

f = piecewise([[(-pulse_width/2,pulse_width/2),f1]]) # for FS series
fp = piecewise( # for plotting

[
[[-T/2,-pulse_width/2],0],
[(-pulse_width/2,pulse_width/2),f1],
[[pulse_width/2,T/2],0],
[(T/2,T-pulse_width/2),0],
[[T-pulse_width/2,T+pulse_width/2],f2],
[(T+pulse_width/2,T+T/2),0],
[[T+T/2,T+T/2],0]

]
)
N = 201 # number of points to plot
tpp = np.linspace(-T/2,3*T/2,N) # numeric array of time values
fpp = []
for i in range(0,N):

fpp.append(fp(tpp[i])) # build array of function values
axes = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
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plt.xlim([-T/2,3*T/2])
plt.xticks([pulse_width/2,T],['$\\frac{\delta}{2}$','$T='+str(T)+'$ s'])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
if save_figures:

tikz_save( # save for LaTeX's pgfplots
'figures/fourier_series_to_transform_pulse'+
str(T)+'.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show() # display here

For δ = 2 and T ∈ [5, 15, 25], the left-hand column of Figure 02.1 shows
two triangle pulses for each period T .

Consider the following argument. Just as a Fourier series is a frequency
domain representation of a periodic signal, a Fourier transform is a fre-
quency domain representation of an aperiodic signal (we will rigorously de-
fine it in a moment). The Fourier series components will have an analog,
then, in the Fourier transform. Recall that they can be computed by inte-
grating over a period of the signal. If we increase that period infinitely, the
function is effectively aperiodic. The result (within a scaling factor) will be
the Fourier transform analog of the Fourier series components.

Let us approach this understanding by actually com-
puting the Fourier series components for increasing period
T . SageMath has nice methods for its piecewise class,
fourier_series_cosine_coefficient(n,T/2) and
fourier_series_sine_coefficient(n,T/2), that can compute the
Fourier series cosine and sine components an and bn for component n (n)
and period T (T).

f_cos = [];
f_sin = [];
f_harmonic_amplitude = [];
omega = [];
for i in range(0,n_max):

f_cos.append(f.fourier_series_cosine_coefficient(i,T/2))
f_sin.append(f.fourier_series_sine_coefficient(i,T/2))
f_harmonic_amplitude.append(

T/pulse_width*sqrt(f_cos[i]**2+f_sin[i]**2)
)
omega.append(2*pi*i/T)
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Furthermore, we have computed the harmonic amplitude
(f_harmonic_amplitude):

Cn =
√
a2n + b2n (02.20)

which we have also scaled by a factor T/δ in order to plot it with a
convenient scale.

axes = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, f_harmonic_amplitude,
linefmt='b-', markerfmt='bo', basefmt='r-'

)
plt.xlabel('frequency $\omega$ (rad/s)')
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
if save_figures:

tikz_save( # save for LaTeX
'figures/fourier_series_to_transform_spectrum'+
str(T)+'.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show() # show here

{
} The line spectra are shown in the right-hand column of Figure 02.1.

Note that with our chosen scaling, as T increases, the line spectra reveal a
distinct waveform.

Let F be the continuous function of angular frequency ω

F(ω) =
δ

2
· sin2(ωδ/4)

(ωδ/4)2
. (02.21)

First, we plot it.

F(w) = pulse_width/2* \
sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N) # numeric array of time values
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amplitude CnT/δ

δ
2

T = 5 s

δ/2

5 10

δ/2

δ
2

T = 15 s

δ/2
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δ/2

δ
2

T = 25 s

δ/2

time (s)

5 10

δ/2

frequency ω (rad/s)

Figure 02.1: triangle pulse trains (left column) with longer periods, descending, and their
corresponding line spectra (right column), scaled for convenient comparison.

Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency $\omega$ (rad/s)')
plt.ylabel('$F(\omega)$')
if save_figures:

tikz_save( # save for LaTeX
'figures/fourier_series_to_transform_transform.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show()

Let’s consider the plot in Figure 02.2 of F. It’s obviously the function
emerging in Figure 02.1 from increasing the period of our pulse train.

Now we are ready to define the Fourier transform and its inverse.
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1 2 3 4 5 6 7 8 9 10 11 12

δ/2

frequency ω (rad/s)

F
(ω

)

Figure 02.2: F(ω), our mysterious Fourier series amplitude analog.

Definition 02.03.1: Fourier transforms: trigonometric form

Fourier transform (analysis):

A(ω) =

∫∞
−∞ y(t) cos(ωt)dt (02.22)

B(ω) =

∫∞
−∞ y(t) sin(ωt)dt. (02.23)

Inverse Fourier transform (synthesis):

y(t) =
1

2π

∫∞
−∞A(ω) cos(ωt)dω+

1

2π

∫∞
−∞ B(ω) sin(ωt)dω. (02.24)
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Definition 02.03.2: Fourier transforms: complex form

Fourier transform F (analysis):

F(y(t)) = Y(ω) =

∫∞
−∞ y(t)ejωtdt. (02.25)

Inverse Fourier transform F−1 (synthesis):

F−1(Y(ω)) = y(t) =
1

2π

∫∞
−∞ Y(ω)e−jωtdω. (02.26)

So now we have defined the Fourier transform. There are many
applications, including solving differential equations and frequency domain
representations—called spectra—of time domain functions.

There is a striking similarity between the Fourier transform and the
Laplace transform, with which you are already acquainted. In fact, the
Fourier transform is a special case of a Laplace transform with Laplace
transform variable s = jω instead of having some real component. Both
transforms convert differential equations to algebraic equations, which can
be solved and inversely transformed to find time-domain solutions. The
Laplace transform is especially important to use when an input function
to a differential equation is not absolutely integrable and the Fourier
transform is undefined (for example a step or ramp function). However,
the Laplace transform is also preferred for initial value problems due to its
convenient way of handling them. The two transforms are equally useful
for solving steady state problems. Although the Laplace transform has
many advantages, for spectral considerations, the Fourier transform is the
only game in town.

A table of Fourier transforms and their properties can be found on the
course website in the “Resources” section.
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Lecture 02.04 Sampling

While most quantities are continuous, making them naturally represented
by continuous functions, in order to represent a signal in a computer, it
must be given a discrete representation.1 Constructing a discrete representa-discrete

tion of a signal is called sampling it: a numerical value is assigned at discretesampling

values of its domain. Since the quintessential signal has time as its domain,
we will henceforth speak as if it is the only type.

Consider a function f : R→ R of time t over the interval [t1, t2] sampled
at a constant interval T to form a sequence of reals (fn)n∈N0 of length
N = 1+ (t2 − t1)/T called the sampled sequence, defined as follows.sampled sequence

Equation 02.27 sampled sequence values

We represent the sampling process as the multiplication of the continu-
ous function f by the Dirac comb function s : R→ R defined asDirac comb

function

s(t) =

∞∑
n=−∞ δ(t− nT), (02.28)

where δ is the Dirac delta function, and illustrated in Figure 02.3. This
sampling representation yields the sampled function f? : R → R defined assampled function

follows.
Equation 02.29 sampled function

This representation requires some interptretation. Recall that δ is zero
everywhere in its domain except at t = 0, when it is undefined, but has an
integral over the “pulse” of unity. Further recall that scaling δ by some factor
λ yields the same functional value, but it is understood in the distribution
sense to be multiplying the integral over the pulse by λ. We call this the
pulse strength. So the sample sequence values fn are computed from f? byδ strength

1Good references for the sampling and related topics are Rowell (2008) and Gene F.
Franklin (1998).
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Figure 02.3: (top) the Dirac comb function s of Equation 02.28, (middle) a function f to be
sampled, and (bottom) a sampled function f?. The height of each pulse is fn and represents
the strength of the pulse.

the following equation.

Equation 02.30 sampled sequence values from f?

In other words, we integrate over the nth pulse to get the sample fn.

02.04.1 Spectrum of a sampled function

The Dirac comb function s is periodic and therefore has a Fourier series
representation. From Definition 02.02, we can compute the components
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The Dirac delta function has a nice property called the sifting propertysifting property

that states that for some function g, the integral
∫
I δ(t−τ)g(t)dt = g(τ) over

the interval I and 0 otherwise. This yields

We happend to choose the easiest interval over which to integrate, but
the same holds for any other period, which means c±n = 1/T for all time.
The Fourier series synthesis, then, is

The spectrum F?(ω) of a sampled function f? can be found directly from
the definition of the Fourier transform (??)
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Figure 02.4: (top) the Fourier transform F of function f(t) = cosω0t and (bottom) the Fourier
transform F? of sampled function f?. T is the sampling period.

This result means the Fourier transform F? of the sampled function f?

is a periodic repetition (with frequency-domain period 2π/T ) of the Fourier
transform F of the continuous signal f, scaled by 1/T .

For instance, although it is periodic and so has a trivial Fourier series,
the cosine function f(t) = cosω0t also has Fourier transform

F(ω) = πδ(ω−ω0) + πδ(ω+ω0). (02.31)

This is illustrated in the top spectrum of Figure 02.4. Our expression above
for F? in terms of F allow us to construct the spectrum for F?, shown in the
bottom spectrum of Figure 02.4.
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Lecture 02.05 Nyquist sampling theorem, aliasing, and
reconstruction

When we sample a signal, we lose information. However, we can recon-
struct an approximation of the original signal if we make some assumptions
about it.

Theorem 02.05.1: Nyquist sampling theorem

If a signal has maximum frequency component fmax, if it is sampled
at a frequency greater than

fN = 2fmax (02.32)

it can be unambiguously reconstructed and otherwise not. We call fN
the Nyquist frequency of a signal.

The “not” case is characterized by aliasing: when a signal appears toaliasing

have frequency components that are in fact higher than they appear—an
artifact of sampling.

This is the first time in our journey that Fourier analysis and frequency
domain concepts will light the path. There are several ways to analyze
aliasing, but perhaps considering the spectrum of a sampled sinusoid is the
most accessible.

Let us consider, as in Figure 02.4, the sampling of the function y(t) =

cosω0t, where ω0 ∈ R. The signal has the Fourier transform

which is just a pulse with strength π at ω = −ω0 and one at ω = +ω0.
The Fourier transform Y? of the sampled signal y? simply “copies” this pair
of pulses to be mirrored about integer multiples of the sampling angular
frequency ωs.

According to ??, ωs > ωN = 2πfN is required to avoid aliasing
and allow us to uniquely reconstruct the original signal. Let’s consider
the situation in which the Nyquist sampling frequency requirements are
met, as shown in the upper plot of Figure 02.5. Now, consider the case
for which the Nyquist sampling requirements are not met and there is
aliasing, as shown in the lower plot of Figure 02.5. These two spectra are
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Figure 02.5: (top) the Fourier transform Y? of sampled function y?(t) = cosω0t and (bottom)
the Fourier transform Y′? of sampled function y′? = cosω′0t, where the Nyquist sampling
frequency ωN is between them: ω0 < ωN < ω′0. That is, y? is sufficiently sampled but y′? is
not, and is therefore aliased. The two spectra are indistinguishable and therefore one must be
confident a priori that the sampling frequency is greater than ωN.

indistinguishable and therefore if we simply assume that the component at
ω0 is “real” (i.e. not aliased), we might be mistaken.

It is important to note that once the signal is sampled, it’s too late to do
anything about it. There are two ways to mitigate aliasing:

1. sample at a high enough rate to capture all frequency components of
the signal and

2. low-pass or anti-aliasing filter the signal before it is sampled. anti-aliasing filter

The former always begs the question—it is never known if the sample rate
is high enough. The latter is always advisable, although it only minimizes
the effects of aliasing.

Assuming there is no aliasing (which is never more than approximately
true), a continuous signal y can be fully reconstructed from its sample
sequence (yn) forN samples and sample period T by the Whittaker–Shannon Whittaker–Shannon

interpolation
formula

interpolation formula Rowell (2008)

y(t) =

N−1∑
n=0

yn
sin(π(t− nT)/T)
π(t− nT)/T

. (02.33)
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Lecture 02.06 Discrete Fourier transforms

The source for this lecture is in SageMath kernel Jupyter notebook. For more
information, see jupyter.org and sagemath.org.

See ricopic.one/measurement/notebooks for the source code notebook.
First, we import packages and all that. We use matplotlib for plotting,
numpy for numerics, and scipy for discrete (fast) Fourier transforms.

Modern measurement systems primarily construct spectra by sampling
an analog electronic signal y(t) to yield the sample sequence (yn) and
perform a discrete Fourier transform.

Definition 02.06.1: discrete Fourier transform

The discrete Fourier transform (DFT) of a sample sequence (yn) of
length N is (Ym), where m ∈ [0, 1, · · · , N− 1] and

Ym =

N−1∑
n=0

yne
−j2πmn/N.

The inverse discrete Fourier transform (IDFT) reconstructs the original
sequence for n ∈ [0, 1, · · · , N− 1] and

yn =
1

N

N−1∑
n=0

Yme
j2πmn/N.

The DFT (Ym) has a frequency interval equal to the sampling frequency
ωs/N and the IDFT (yn) has time interval equal to the sampling time T .
The first N/2+ 1 DFT (Ym) values correspond to frequencies

and the remaining N/2− 1 correspond to frequencies

In practice, the definitions of the DFT and IDFT are not the most efficent
methods of computation. A clever algorithm called the fast Fourier transform
(FFT) computes the DFT much more efficiently. Although it is a good
exercise to roll our own FFT, in this lecture we will use scipy’s built-in
FFT algorithm, loaded with the following command.
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from scipy import fft

Now, given a time series array y representing (yi), the DFT (using the
FFT algorithm) can be computed with the following command.

fft(y)

In the following example, we will apply this method of computing the
DFT.

02.06.0.1 A DFT/FFT example

We would like to compute the DFT of a sample sequence (yn) generated by
sampling a spaced-out sawtooth. Let’s first generate the sample sequence
and plot it.

We define the sampling rate fs, which defines the sampling interval
Ts. Furthermore, we define the frequency of the spaced sawtooth signal
f_signal.

fs = 200 # sampling rate
Ts = 1.0/fs # sampling interval
f_signal = 10 # frequency of the signal

We want an interval of ramp followed by an interval of “space” (zeros).
The following method of generating the sampled signal y helps us avoid
leakage, which we’ll describe after the example.

arr_zeros = np.zeros(fs/f_signal/2) # half signal period worth of zeros
arr_ramp = np.arange(fs/f_signal/2) # half signal period worth of ramp
y = [] # initialize time sequence
j = 0
for i in range(fs):

if i % (fs/f_signal/2) == 0:
# if we are at the start of a signal period
if j % 2 == 0:

# every other signal period
y = np.append(y,arr_zeros)

else:
y = np.append(y,arr_ramp)

j += 1
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Figure 02.6: (top) a sampled sequence (yn) plotted through time and (bottom) its discrete
Fourier transform sequence (Ym) plotted through frequency.

From this sequence, we can compute the following parameters.

N = len(y) # number of samples
t_a = np.arange(0,N*Ts,Ts) # time array
time_total = N*Ts # total time in series

Plotting this with matplotlib is fairly straightforward. The result is
shown in the top plot of Figure 02.6.

plt.figure()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('$y_n$');

Display the plot with the following command.

plt.show()

Now we have a nice time sequence on which we can perform our DFT.
It’s easy enough to compute the FFT.
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Y = fft(y)/N # FFT with proper normalization

Recall that the latter values correspond to negative frequencies. In
order to plot it, we want to rearrange our Y array such that the elements
corresponding to negative frequencies are first. It’s a bit annoying, but c’est
la vie.

Y_positive_zero = Y[range(N/2)]
Y_negative = np.flip(

np.delete(
Y_positive_zero,
0

),
0

)
Y_total = np.append(Y_negative,Y_positive_zero)

Now all we need is a corresponding frequency array.

freq_total = np.arange(-N/2+1,N/2)*fs/N

Now, just to plot.

plt.figure()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency $f$ (Hz)')
plt.ylabel('$Y_m$');

And now display the plot of the spectrum, shown on the bottom of
Figure 02.6.

plt.show();

02.06.0.2 Leakage

The DFT assumes the sequence (yn) is periodic with period N. An
implication of this is that if any periodic components have period Nshort <

N, unless N is divisible by Nshort, spurious components will appear in (Yn).
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Figure 02.7: three sample window functions.

Avoiding leakage is difficult, in practice. Instead, typically we use a window
function to mitigate its effects. Effectively, windowing functions—such as
the Bartlett, Hanning, and Hamming windows—multiply (yn) by a function
that tapers to zero near the edges of the sample sequence.

Numpy has several window functions such as bartlett(),
hanning(), and hamming(). For usage information on a function, the
following ? idiom is useful.

np.hanning?

Let’s plot the windows to get a feel for them.

bartlett_window = np.bartlett(N)
hanning_window = np.hanning(N)
hamming_window = np.hamming(N)
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plt.figure()
plt.plot(t_a,bartlett_window,'b-',label='Bartlett',linewidth=2)
plt.plot(t_a,hanning_window,'r-',label='Hanning',linewidth=2)
plt.plot(t_a,hamming_window,'g-',label='Hamming',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('window $w_n$')
plt.legend();

Show the figure Figure 02.7.

plt.show()
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02.07 Problems for Chapter 02

02.07.1 Encoding and decoding with DFTs

The source for this exercise lecture is in a Python 2 kernel Jupyter notebook.
For more information, see python.org and jupyter.org.

See ricopic.one/measurement/notebooks for the source code notebook.
This exercise encodes a “secret word” into a sampled waveform for

decoding via a discrete Fourier transform (DFT). The nominal goal of the
exercise is to decode the secret word. Along the way, plotting and
interpreting the DFT will be important.

First, load relevant packages.
We define two functions: letter_to_number to convert a letter into

an integer index of the alphabet (a becomes 1, b becomes 2, etc.) and
string_to_number_list to convert a string to a list of ints, as
shown in the example at the end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print '"aces" = '+str(string_to_number_list('aces'))

"aces" = [1, 3, 5, 19]

Now, we encode a code string code into a signal by beginning with
“white noise,” which is broadband (appears throughout the spectrum) and
adding to it sin functions with amplitudes corresponding to the letter
assignments of the code and harmonic corresponding to the position of the
letter in the string. For instance, the string 'bad' would be represented by
noise plus the signal

2 sin 2πt+ 1 sin 4πt+ 4 sin 6πt. (02.34)

N = 2000
Tm = 30
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T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'abracadabra'
code_number_array = np.array(string_to_number_list(code)) # list into array
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.array(np.sin(2.*np.pi*(i+1.)*x))

Now, we plot.

plt.figure()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('$y_n$')
plt.show()

Finally, we can save our data to a file secrets to distribute our
message. We save it in two formats: 1. secrets.npy the numpy format
that’s not all that compressed and 2. secrets.mat the MATLAB format
that’s impressively compressed.

np.save('secrets',y)
scipy.io.savemat('secrets.mat',mdict={'y':y.astype('float')})

In order to load the .npy file into Python, we can use the following
command.

secret_array = np.load('secrets.npy')
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03

Measurement systems as dynamic
systems

Measurement systems respond to the quantities measured. This response response

is crucial to our interpretation of a measurement reading. For instance, a
thermometer does not give instantaneous measurement; rather, we wait
for the response to “settle” before taking a reading. However, time delay
is only one way in which the measurement system response affects the
reading. More complicated effects require further analysis. system dynamics

System dynamics is a field devoted to such system analysis by represent-
ing systems with mathematical models. Specifically, we will consider lumped- mathematical

model
lumped-parameter
modeling

parameter models of measurement systems. These models give insight into
the measurement system’s behavior and allow us to properly design mea-
surement systems and interpret their readings. Modeling does not replace
calibration, but complements it.
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Lecture 03.01 Dynamic system representations

Dynamic systems—measurement and otherwise—have several represen-
tations, mostly graphical or mathematical. For instance, schematics, lineargraphical

representations
mathematical

representations

graphs, and block diagrams are graphical representations. The foci of this
lecture are three mathematical representations and a graphical representa-
tion:

1. the input-output, linear ordinary differential equation,
2. the transfer function,
3. the frequency response function, and
4. the block diagram.

Refer to Figure 03.1 for an illustration of the relations among system
representations.

03.01.1 Input-output ordinary differential equations

Consider a dynamic system described by the input-output differential equa-
tion—with independent variable y(t) (called the output), dependent vari-
able time t, input u(t), constant coefficients ai, bj, order n, and m 6 n for
n ∈ N0—as:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u. (03.1)

This might describe, for instance, an output voltage reading from an
input force on a piezo-electric transducer. Mechanical, electronic, thermal,
fluidic, and many other types of dynamic systems can be described with
Equation 03.2. It is important to note that this describes the relationship
between a single-input and a single-output (SISO). However, a great manysingle-input, single

output (SISO measurement systems behave approximately like linear SISO systems (at
least in some operating regimes).

03.01.2 Transfer functions

Consider a dynamic system described by the input-output differential equa-
tion—with variable y representing the output, dependent variable time t,
variable u representing the input, constant coefficients ai, bj, order n, and
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Figure 03.1: relations among system representations.

53 3 September 2018, 17:29:26 03.01 3 2



Chapter 03 Measurement systems as dynamic systemsLecture 03.01 Dynamic system representations

m 6 n for n ∈ N0—as:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u. (03.2)

The Laplace transform L of Equation 03.2 yields something interestingLaplace transform

(assuming zero initial conditions):

L

(
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y

)
=

L

(
bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u

)
⇒

L

(
dny

dtn

)
+ an−1L

(
dn−1y

dtn−1

)
+ · · ·+ a1L

(
dy

dt

)
+ a0L (y) =

bmL

(
dmu

dtm

)
+ bm−1L

(
dm−1u

dtm−1

)
+ · · ·+ b1L

(
du

dt

)
+ b0L (u) ⇒

snY + an−1s
n−1Y + · · ·+ a1sY + a0Y =

bms
mU+ bm−1s

m−1U+ · · ·+ b1sU+ b0U.

Solving for Y,

The inverse Laplace transform L−1 of Y is the forced response. However,forced response

this is not our primary concern; rather, we are interested to solve for the
transfer function H as the ratio of the output transform Y to the input
transform U, i.e.

H(s) ≡ Y(s)

U(s)
(03.3)

=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
. (03.4)

This is the foundation of another graphical technique called blockblock diagram

diagrams.
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H
U Y = HU

Figure 03.2: a block diagram for transfer function H(s) from input U(s) to output Y(s).

G H
U Y

=

GH
U Y = GHU

U1

U2

+

−

Y = U1 −U2

Figure 03.3: block diagrams showing (left) concatenation (i.e. multiplication) of G and H
and (right) summation of inputs U1 and U2 (actually, subtraction).

03.01.3 Block diagrams

Block diagrams (also called operational block diagrams) represent inter- and
intra-system relationships. A block, shown in Figure 03.2, represents a block

dynamic system with input U(s) and output Y(s) and (typically) transfer
function H(s).

Each block can be considered, in the Laplace domain, to multiply its multiplication

input by the transfer function, as illustrated in Figure 03.3 (left). Also
shown in Figure 03.3 (right) is the summation block or junction that adds (or summation block

subtracts) its inputs.
Block diagrams differ fundamentally from circuit diagrams and linear

graphs in that do not “load” each other. That is, concatenating two systems
does not affect the operation of the first. However, since we can write an
input-output differential equation for a circuit and we can write a transfer
function for a differential equation—block diagrams can represent a circuit
or many other dynamic systems. We must be careful to make sure that
subsequent connections do not load the output of another block. That is,
blocks have infinite input impedance.

03.01.4 Frequency response functions

Let a system have input u and output y. We define its frequency response frequency
response functionfunction H(jω) to be the ratio of the Fourier transform its output to the

Fourier transform of its input:
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Now, we have used a strange notation for the Fourier transform of
a function, including the j =

√
−1 in the argument. In the context of

frequency response, this is both conventional and gross. We will see why
it’s (barely) useful in a moment.

Typically, a system’s dynamical model will first be developed as a
differential equation—for instance, our input-output differential equation.
We have already learned how to find a system’s transfer function H(s)—
which is the Laplace transform of the ratio of input to output. A shortcut to
deriving the frequency response function H(jω) from the transfer function
H(s) is to note that the Fourier transform of a function is equal to the
Laplace transform of that function with the substitution s → jω. For the
frequency response function,

H(jω) = H(s)|s→jω. (03.7)

Note that we’ve used the same symbol H for both the Fourier and
Laplace transforms, which is gauche af, but which is somewhat mitigatedgauche af

by our other violation of good taste: the argument s goes with the Laplace
transform and the argument jω goes with the Fourier transform.

So what does the frequency response function mean? It describes, inmeaning of H(jω)

the frequency domain, how a system’s input relates to its output. In
Lecture 03.09, we will consider this interpretation in greater detail. Finally,
note that the steady-state solution can be had by taking the inverse Fourier
transform:

y(t) = F−1 (Y(jω))

= F−1 (H(jω)U(jω)) . (03.8)

Due to its greater generality (i.e. broader applicability), we typically prefer
the inverse Laplace transform (and transfer function) for this task.
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Example 03.01-1 converting representations

For the input-output differential equation

2
d2y

dt
+ 4

dy

dt
+ 6y = 10

du

dt
+ 2u.

find the transfer function H(s) and the frequency response function
H(jω).
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Lecture 03.02 Zeroth-order measurement systems

In special cases, we can consider measurement systems to be modeled by
zeroth-order “differential” equations—that is, by algebraic systems.

If both input u and output y are static, the time-derivatives of Equa-
tion 03.2 are zero. This leaves the input-output equation, with K ∈ R in the
form

y = Ku. (03.9)

We call K the static sensitivity. Technically, the input needn’t be static,static sensitivity

but one would question the efficacy of a measurement system that has a
dynamic input and a static output. In fact, we have assumed neither input
nor output changes. This can be approximately true if we calibrate and
measure only in steady-state.

Another way to have Equation 03.9 as our model is if we assume there
are no energy storage or dissipative elements. This type of measurement
system does not exist, but in certain situations it can be considered
approximately valid.

Example 03.02-1 zeroth or not?

Explain conditions under which the following systems can be con-
sidered zeroth-order.

1. A bulb thermometer.
2. A mass balance.
3. A speedometer.
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Lecture 03.03 First-order measurement systems

First order measurement systems have input-output differential equations
of the form

τ
dy

dt
+ y = b1

du

dt
+ b0u (03.10)

with τ ∈ R called the time constant of the system. Measurement systems time constant

with a single energy storage element—such as those with electrical or
thermal capacitance—can be modeled with first-order systems.

03.03.1 Step response

Commonly, a scaling of the unit step function us(t), which is 0 for t < 0 and unit step function

1 for t > 0, can be considered the input to this and other measurement
systems (e.g. whenever the input is changed suddenly, us is a good
approximation). If we consider the common situation that b1 = 0 and
u(t) = Kus(t) for some K ∈ R, the solution to Equation 03.10 is

If we assume the steady-state solution is the proper measurement value,
the transient response is error. Considering it never reaches zero in finite

transient steady-state

y(0)

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

0.2Kb0

0.4 Kb0

0.6 Kb0

0.8 Kb0

Kb0

time (s)

forcing measurand b0Kus(t)
response y(t)

Figure 03.4: (step) response y(t) of a first order system with input u(t) = Kus(t) and b1 = 0.
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time, this is a bummer . However, it does decay exponentially, so in
5τ, the transient response is less than 1 % of difference between y(0) and
steady-state. A plot of the step response is shown in Figure 03.4.

03.03.2 Sinusoidal response

Another common input to first-order measurement systems modeled by
Equation 03.10 is the sinusoid u(t) = A sinωt. For b1 = 0, the solution is

where κ can be found from the initial condition y(0) to be

κ = y(0) +
b0A√
1+ (ωτ)2

sin(arctan(ωτ)). (03.11)

Figure 03.5 shows responses of a first-order measurement system to si-
nusoidal inputs (measurands) at different frequenciesω. Note the transient
response decays with the same rate τ no matter the input frequency. How-
ever, there are two differences in the steady-state responses: the amplitude
and phase. In fact, the steady-state amplitude and phase of an output com-
pared to an input present a form of error in the measurement. Ideally, the
ratio of the output and input is unity; however, for positive ω, this is never
quite the case. We define this ratio, called the magnitude ratioM(ω), to be themagnitude ratio

M(ω) steady-state output amplitude over the forcing amplitude. For first-order
systems,

A metric for the nearness of M(ω) to unity is called the dynamic errordynamic error

δ(ω), given by

Ideally, δ(ω) = 0, but as we can see from the expression for M(ω),
this is only ever approximately true for nonzero τ and ω. However, it is
small when the product ωτ is small. So, in order to minimize dynamic
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transient steady-statey(0)

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

0

Ab0

time (s)

forcing, ω = π
response
forcing, ω = .95π
response
forcing, ω = .90π
response

Figure 03.5: response y(t) of a first order system with input u(t) = A sinωt and b1 = 0 for
three values of ω. The forcing function (measurand) is b0A sinωt.

error for the measurement of a sinusoid at a given frequency, we must
strive to minimize the time constant τ. It is common to call “good enough”
M(ω) > .707.

Similarly, the phase difference of the output relative to the input is
ideally zero. Therefore, the phase shift φ(ω) is another type of error and,
for first-order systems, is given by

This corresponds to a time-delay β1(ω) in the measurement: time-delay β1(ω)

Clearly, we want to minimize φ(ω) and β1(ω). Typically, this is
achieved by minimizing τ, which corresponds to the minimization of τ for
the minimization of the dynamic error.

Note that the steady-state response of the measurement system to
sinusoidal inputs is characterized by M(ω) and φ(ω). In fact, a crucial
identify will be observed here:
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Figure 03.6: the magnitude ratio and phase.

the magnitude ratioM(ω) and phase φ(ω) are equal to the magnitude
|H(jω)| and phase ∠H(jω) of the frequency response function H(jω).

This is recognized as being the complex amplitude of the output over the
input, which are plotted in Figure 03.6.
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Lecture 03.04 Second-order measurement systems:
free response

Second-order measurement systems have input-output differential equa-
tions of the form

d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f(t) (03.12)

where ωn is called the natural frequency, ζ is called the (dimensionless) natural frequency
ωndamping ratio, and f is a forcing function that depends the input u as
damping ratio ζ

f(t) = b2
d2u

dt2
+ b1

du

dt
+ b0u. (03.13)

Measurement systems with two energy storage elements—such as those
with an inertial element and a spring-like element—can be modeled with
second-order systems.

For distinct roots (λ1 6= λ2), the homogeneous solution is, for some real
constants κ1 and κ2,

yh(t) = κ1e
λ1t + κ2e

λ2t (03.14)

where
λ1, λ2 = −ζωn ±ωn

√
ζ2 − 1. (03.15)

03.04.1 Free response

The free response yfr of a system is its response to initial conditions and no free response yfr

forcing (f(t) = 0). This is useful for two reasons:

1. perturbations of the measurement system from equilibrium result in
free response, making it critical; and

2. the free response can be added to a forced response.

The free response is found by applying initial conditions to the homo-
geneous solution. With initial conditions y(0) = y0 and ẏ(0) = 0, the free
response is

yfr(t) = y0
1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
)
. (03.16)

There are five possibilities for the location of the roots λ1 and λ2, all
determined by the value of ζ.

63 3 September 2018, 17:29:26 03.04 3 1



Chapter 03 Measurement systems as dynamic systemsLecture 03.04 Second-order measurement systems

ζ ∈ (−∞, 0): unstable This case is very undesirable because it means our
measurement system is unstable and, given any nonzero input or
output, will explode to infinity. Not a good look.boom

ζ = 0: undamped An undamped system will oscillate forever if perturbed
from zero output. Once again, a bad look for a measurement device.

ζ ∈ (0, 1): underdamped Roughly speaking, underdamped systems oscil-
late, but not forever. Let’s consider the form of the solution for initial
conditions and no forcing. The roots of the characteristic equation are

λ1, λ2 = −ζωn ± jωn
√
1− ζ2 = −ζωn ± jωd (03.17)

where the damped natural frequency ωd is defined asdamped natural
frequency ωd

ωd ≡ ωn
√
1− ζ2. (03.18)

From Equation (03.16) for the free response, using Euler’s formulas
to write in terms of trigonometric functions, and the initial conditions
y(0) = y0 and ẏ(0) = 0, we have

yfr(t) = y0
e−ζωnt√
1− ζ2

cos(ωdt−ψ) (03.19)

where the phase ψ is

ψ = arctan
ζ√
1− ζ2

. (03.20)

This is an oscillation that decays to the value it oscillates about,
y(t)|t→∞ = 0. So any perturbation of a critically damped measure-
ment system will result in a decaying oscillation about equilibrium.

ζ = 1: critically damped In this case, the roots of the characteristic equation
are equal:

λ1 = λ2 = −ωn (03.21)

So we must modify Equation 03.14 with a factor of t for the homoge-
neous solution. The free response for initial conditions y(0) = y0 and
ẏ(0) = 0, we have

yfr(t) = y0 (1+ωnt) e
−ωnt. (03.22)

This decays without oscillation, but just barely.
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Figure 03.7: free response yfr(t) of a second-order system with initial conditions y(0) = y0
and ẏ(0) = 0 for different values of ζ. Underdamped, critically damped, and overdamped
cases are displayed.

ζ ∈ (1,∞): overdamped Here the roots of the characteristic equation are
distinct and real. From Equation (03.16) with free response to initial
conditions y(0) = y0 and ẏ(0) = 0, we have the sum of two decaying
real exponentials. This response will neither overshoot nor oscillate—
like the critically damped case—but with even lesser gusto.

Figure 03.7 displays the free response results. Note that a small
damping ratio results in overshooting and oscillation about the equilibrium
value. In contrast, large damping ratio results in neither overshoot nor
oscillation. However, both small and large damping ratios yield responses
that take longer durations to approach equilibrium than damping ratios
near unity. For this reason, the damping ratio of a measurement system
should be close to one. There are tradeoffs on either side of ζ = 1.
Slightly less than one yields faster responses that overshoot a small amount.
Slightly greater than one yields slower responses less prone to oscillation.

Example 03.04-1 MRFM cantilever beam detector

In magnetic resonance force microscopy (MRFM), the primary detec-
tor is a small cantilever beam with a magnetic tip. Model the beam as
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a spring-mass-damper system with mass m = 6 pg,a spring constant
k = 15 mN/m, and damping coefficient B = 37.7 · 10−15 N·s/m.

1. What is the natural frequency ωn?
2. What is the damping ratio ζ?
3. In free response, how long before the amplitude must be less

than 10% of its initial value? An upper bound is sufficient.

aOne pg = 10−12g = 10−15kg.
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Lecture 03.05 Second-order measurement systems:
forced response

Second-order measurement systems are subjected to a variety of forcing
functions f. In this lecture, we examine two common varieties: step forcing
and sinusoidal forcing. In what follows, we develop forced response yfoforced response yfo

solutions, which are the specific solution responses of systems to given inputs
and zero initial conditions: all initial conditions set to zero. In Lecture 03.08,zero initial

conditions a method is presented for combining free and forced response.

03.05.1 Step response

Step forcing of the form f(t) = Kus(t), where K ∈ R and us is the unit step
function, models abrupt changes to the input (measurand). The solution
is found by applying zero initial conditions (y(0) = 0 and ẏ(0) = 0) to the
general solution. If the roots of the characteristic equation λ1 and λ2 are
distinct, the forced response is

yfo(t) =
K

ω2n

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))

(03.23)

where
λ1, λ2 = −ζωn ±ωn

√
ζ2 − 1. (03.24)

Once again, there are five possibilities for the location of the roots of
the characteristic equation λ1 and λ2, all determined by the value of
ζ. However, there are three important cases for measurement systems:
underdamped, critically damped, and overdamped.

ζ ∈ (0, 1) underdamped In this case, the roots are distinct and complex:

λ1, λ2 = −ζωn ± jωd. (03.25)

From Equation 03.23, the forced step response is

yfo(t) =
K

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)

)
(03.26)

where the phase ψ is

ψ = arctan
ζ√
1− ζ2

. (03.27)

This response overshoots, oscillates about, and decays to K/ω2n.
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ζ = 1 critically damped The roots are equal and real:

λ1, λ2 = −ωn (03.28)

so the forced step of Equation 03.23 must be modified; it reduces to

yfo(t) =
K

ω2n

(
1− e−ωnt(1+ωnt)

)
. (03.29)

This response neither oscillates nor overshoots its steady-state of K
ω2n

,
but just barely.

ζ ∈ (1,∞) overdamped In this case, the roots are distinct and real, given by
Equation 03.24. The forced step given by Equation 03.23 is the sum of
two decaying real exponentials. These responses neither overshoot
nor oscillate about their steady-state of K/ω2n. With increasing ζ,
approach to steady-state slows.

Figure 03.8 displays the forced step response results. These responses
are inverted versions of the free responses of 03.04.1. Note that a small
damping ratio results in overshooting and oscillation about the steady-state
value. In contrast, large damping ratio results in neither overshoot nor
oscillation. However, both small and large damping ratios yield responses
that take longer durations to approach equilibrium than damping ratios
near unity. For this reason, the damping ratio of a measurement system
should be close to ζ = 1. There are tradeoffs on either side of one. Slightly
less yields faster responses that overshoot a small amount. Slightly greater
than one yields slower responses less prone to oscillation.

03.05.2 Sinusoidal response

Here we consider only steady-state sinusoidal response, allowing us to
focus on frequency-domain considerations. The second-order system
transfer function, found from the Laplace transform of Equation 03.12, from
input u (generating forcing function f(t) = Ku(t)) to output y has the form

H(s) =
K/ω2n

s2 + 2ζωns+ω2n
. (03.30)

The frequency response function H(jω) is found via the substitution
s→ jω, where ω is the input sinusoidal frequency:

H(jω) =
K/ω2n

(1− (ω/ωn)2) + j(2ζω/ωn)
. (03.31)
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Figure 03.8: forced step response yfo(t) of a second-order system for different values of ζ.
Underdamped, critically damped, and overdamped cases are displayed.

Writing this in terms of a magnitude and phase,

|H(jω)| =
K/ω2n√

(1− (ω/ωn)2)
2
+ (2ζω/ωn)2

and (03.32a)

∠H(jω) = arctan
−2ζω/ωn
1− (ω/ωn)2

. (03.32b)

These functions are plotted in Figure 03.9 for a range of ζ. Note espe-
cially that the magnitude |H(jω)| is near unity for low frequency, peaks (for
underdamped systems) near ωn, and tapers to zero high frequency. This
corresponds to amplitude ratios between the input sinusoidal amplitude
and output sinusoidal amplitude.

The phase ∠H(jω) is near zero for low frequency is −90 deg at ωn, and
approaches −180 deg for high frequency. This corresponds to a phase lag
between the input and output sinusoids.

For input u(t) = A sin(ωt + φ), the steady-state response yss can be
found directly from the frequency response:

yss(t) = A|H(jω)| sin(ωt+ φ+ ∠H(jω)). (03.33)

We use the same metric as before for the nearness of |H(jω)| to unity—
the dynamic error—
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Figure 03.9: the magnitude and phase of the frequency response function H(jω).

When δ(ω) ≈ 0, the input (measurand) amplitude and output (indi-
cation) amplitude are approximately equal. Note that, according to Fig-
ure 03.9, when δ(ω) ≈ 0 (i.e. |H(jω)| ≈ 1), the phase lag (and therefore the
time lag) is relatively small. This is ideal for second-order measurement
systems.
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Lecture 03.06 Transient response characteristics

We define four transient response characteristics, all defined in terms of a
system’s step input response. For the following, please refer to the illustrationstep response

in Figure 03.10.

1. The rise time Tr is the duration from the time the response reaches 10%rise time

to the time it reaches 90 % of its final value.
2. The peak time Tp is the time at which the response reaches its first orpeak time

maximum peak.1

3. The percent overshoot %OS expresses the amount the response over-percent overshoot

shoots its steady-state value, expressed as a percentage of the steady-
state value.

4. The settling time Ts is the time at which the response reaches, andsettling time

thereafter remains within, ±2 % of its steady-state value.1

1This definition assumes the step input occurs at t = 0. Otherwise, subtract the nonzero
initial time.

0 Tp Ts

0.1yss

0.9yss

yss ± 2 %

yp

%OS = 100
yp − yss
yss

Tr

Figure 03.10: transient response characteristics rise time Tr, peak time Tp, percent overshoot
%OS, and settling time Ts in terms of a response’s steady-state yss and peak yp.
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Lecture 03.07 Exact analytical transient response char-
acteristics of first- and second-order sys-
tems

03.07.1 First-order systems

First-order systems without zeros have transient responses characterized
by a time-constant τ that appears in the total response as time-constant

e−t/τ + . (03.34)

The transient exponential decays such that in three time constants 3τ only
5 % of the term remains; in 5τ, less than 1 %.

There is neither peak nor overshoot for this type of response. However,
the rise time for these systems is found from the solution to the first-order rise time

input-output ode for y(0) = 0:

y(t) = Kb0

(
1− e−t/τ

)
. (03.35)

The rise time is, by definition, the duration of the time interval [t1, t2]
such that

y(t1) = 0.1yss to y(t2) = 0.9yss. (03.36)

The first of these yields

Kb0

(
1− e−t1/τ

)
= 0.1Kb0 ⇒ (03.37a)

t1 = −τ ln 0.9 (03.37b)
≈ 0.1054τ. (03.37c)

Solving in an analogous fashion, we find t2 ≈ 2.3026τ. The interval, then, is
t2 − t1 = 2.1972τ.

Equation 03.38 first-order system rise time

Finally, the settling time can be derived in a fashion similar to the rise settling time

time.
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Equation 03.39 first-order system settling time

03.07.2 Second-order systems

Second-order system transient responses are characterized by a natural
frequency ωn and damping ratio ζ. Following a procedure very similar
to that for first-order systems, the following relationships can be derived.

The rise time Tr does not have an analytical solution in terms of ωn andrise time

ζ. However, Figure 03.11 can be developed, numerically.
The peak time Tp has the following, simple expressionpeak time

Tp =
π

ωd
, (03.40)

where ωd = ωn
√
1− ζ2 is the damped natural frequency.

The percent overshoot %OS is related directly to ζ as followspercent overshoot

%OS = 100 exp
−ζπ√
1− ζ2

⇔ ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

. (03.41)

Finally, the settling time Ts is expressed assettling time

Ts =
4

ζωn
. (03.42)
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Figure 03.11: the relationship between rise time and damping ratio.
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Lecture 03.08 Properties of linear, time-invariant
systems

From the principle of superposition, linear, time invariant (LTI) system re-superposition
linear,

time-invariant (LTI)
systems

sponses to both initial conditions and nonzero forcing can be obtained by
summing the free and forced responses:

y(t) = yfr(t) + yfo(t).

Moreover, superposition says that any linear combination of inputs yields
a corresponding linear combination of outputs. That is, we can find the
response of a system to each input, separately, then linearly combine (scale
and sum) the results according to the original linear combination. That is,
for inputs u1 and u2 and constants a1, a2 ∈ R, a forcing function

would yield output

where y1 and y2 are the outputs for inputs u1 and u2, respectively.
This powerful principle allows us to construct solutions to complex

forcing functions by decomposing the problem. It also allows us to make
extensive use of existing solutions to common inputs.

There is one more LTI system property worth noting here. Let a system
have input u1 and corresponding output y1. If the system is then given
input u2(t) = u̇1(t), the corresponding output is

Similarly, if the same system is then given input u3(t) =
∫t
0 u1(τ)dτ, the

corresponding output is
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Lecture 03.09 Response to periodic inputs

We have already considered the response of first- and second-order mea-
surement systems to sinusoidal inputs (measurands). These are not the
only periodic inputs encountered by measurement systems; in fact, we fre-
quently encounter non-sinusoidal periodic inputs.

Fortunately, we already have the mathematical apparatus to deal with
these inputs. Recall that a periodic signal u with period T has a Fourier Fourier series

series representation, for n ∈ N0 and ωn ≡ 2πn/T is the angular frequency
of component n,

u(t) =
a0
2

+

∞∑
n=1

Cn sin(ωnt+ φn). (03.43)

where we have written the sum in terms of harmonic amplitudes Cn and
phases φn defined as via A.02.11:

Cn =
√
a2n + b2n and (03.44)

φn = arctan
bn

an
(03.45)

and where an and bn are found from the trigonometric Fourier series
analysis

an =
2

T

∫T/2
−T/2

u(t) cos (ωnt)dt (03.46)

bn =
2

T

∫T/2
−T/2

u(t) sin (ωnt)dt. (03.47)

In other words, a periodic signal can be represented as a sum of sinusoids.
When we combine this with the principle of superposition—specifically principle of

superpositionwith the fact that, for linear systems, the linear combination of inputs yields an
equivalent linear combination of outputs—we can compute the response of a
system to a periodic input by

1. representing the input u with a Fourier series,
2. computing the response of the system to each term in the series, and
3. summing the result.

This is valid for transient and steady-state analysis, but, when working
with periodic functions, we typically are most concerned with steady-state.
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Conveniently, the steady-state response yn of a system with frequency
response function H(jω) to sinusoidal forcing un = Cn sin (ωnt+ φn) has
already been developed:

The special case is y0, which is2

From the principle of superposition, the output to the sum of the inputs
un is just the sum of outputs yn:

In Example 02.02-1, we found that a square wave of amplitude one has
trignometric Fourier series components

an = 0 and

bn =
2

nπ
(1− cos(nπ))

=

{
0 n even
4
nπ n odd.

Therefore, from the definitions of Cn and φn, with bn > 0,

Cn = bn and

φn = arctan
bn

an

=

{
¿ for n even
π/2 for n odd.

If we consider the steady-state response of a system with frequency re-
sponse functionH(jω) to this square wave input, we can create Figure 03.12
and Figure 03.13, showing how the system responds to this input. These
figures are generated by applying the expression for yn.

2This is derived by assuming an input amplitude a0/2 and angular frequency 0 rad/s.
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Figure 03.12: the magnitude line spectrum Cn of the input, which is operated on by
the measurement system with frequency response function H(jω) to form the output
magnitude line spectrum |H(jωn)|Cn.
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Figure 03.13: the phase line spectrum φn of the input, which is operated on by the
measurement system with frequency response function H(jω) to form the output phase
line spectrum ∠H(jωn) + φn.
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Lecture 03.10 Phase linearity

The source for this exercise lecture is in a Python 2 kernel Jupyter notebook.
For more information, see python.org and jupyter.org.

See ricopic.one/measurement/notebooks for the source code notebook.
We observed in the last lecture that significant distortion of a non-

sinusoidal periodic function can occur. Due to the system’s significant
underdamping and confounded by the input spectral component right on
the natural frequency, significant resonance distorted the signal. But for
most measurement systems, we prefer damping ratios nearer unity. Can
these systems also exhibit distortion? Yes, they can. Consider the Fourier
series of a system with periodic input:

u(t) =
a0
2

+

∞∑
n=1

Cn sin(nω1t+ φn). (03.48)

We derived the output:

y(t) =
a0
2
H(j0) +

∞∑
n=1

Cn|H(jωn)| sin(nω1t+ φn + ∠H(jωn)). (03.49)

Let the system’s phase shift ∠H(jω) depend linearly on ω. In this
case, the fundamental component has shift ∠H(jω1), the second component
has shift 2∠H(jω1), the third 3∠H(jω1), and each subsequent component
n∠H(jω1). The nth sinusoid in the sum becomes

sin(nω1t+ n∠H(jω1) + φn) (03.50)
= sin(n(ω1t+ ∠H(jω1)) + φn). (03.51)

Letting θ = t+ ∠H(jω1)/ω1, this becomes

sin(nω1θ+ φn) (03.52)

Within a time-shift, this is exactly the same as the input! Therefore, for
an input with dominant frequency components below some frequency ωc,
if the magnitude ratio belowωc is approximately 1 and if the measurement
system’s phase shift below ωc is approximately linear in frequency, the
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output should have the same amplitude and shape as the input, with a
time lag.

This is an important result. Let ωc be the cutoff frequency, above which
the magnitude ratio declines and phase shift becomes significant. Any
periodic input with significant frequency components aboveωc will exhibit
distortion. Therefore, it is not simply the resonance that distorted the signal
from the previous lecture. We explore this in further detail by applying the
square wave to the same system with a single difference: now the damping
ratio is ζ = 0.707, which has a frequency response that is optimally “flat”
and “wide.”

First, we generate and plot the input square wave at a few frequencies.
The motivation for multiple frequencies will become clear, later. The
angular frequency of the nth harmonic is defined in terms of the square
wave period T.

def w(n,T): # angular frequency
return 2*pi*n/T

# three periods to explore
T1 = 2*pi
T2 = 2*T1
T3 = 3*T1

# plot the square waves
t = linspace(0,6*pi,201)
u_1 = signal.square(w(1,T1)*t)
u_2 = signal.square(w(1,T2)*t)
u_3 = signal.square(w(1,T3)*t)
f,ax=plt.subplots(3,1)
f.tight_layout()
ax=plt.subplot(311)
ax.plot(t,u_1)
ax=plt.subplot(312)
ax.plot(t,u_2)
ax=plt.subplot(313)
ax.plot(t,u_3)
plt.xlabel("time (s)")
plt.show()

The system will be second-order and defined via its magnitude and
phase functions, derived previously. We choose a natural frequency of 5.
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Figure 03.14: png

|H(jω)| =
1√

(1− (ω/5)2)
2
+ (2ζω/5)2

and (03.53)

∠H(jω) = arctan
−2ζω/5

1− (ω/5)2
. (03.54)

def Hm(w,z):
return 1/sqrt((1-(w/5)**2)**2 + (2*z*w/5)**2)

def Hp(w,z):
return arctan2(-2*z*w/5,1-(w/5)**2)

Let’s plot this for two values of ζ. The results are shown in Figure 03.15.
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wl = logspace(-1,2,201)
plt.semilogx(wl,Hm(wl,.1),wl,Hm(wl,.7))
plt.ylabel('$|H(j\omega)|$')
plt.legend(['$\zeta = 0.1$','$\zeta = 0.7$'])
if save_figures:

tikz_save( # save for LaTeX
'figures/phase_linearity_mag.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show()
plt.semilogx(wl,Hp(wl,.1),wl,Hp(wl,.7))
plt.ylabel('phase of $H(j\omega)$')
if save_figures:

tikz_save( # save for LaTeX
'figures/phase_linearity_phase.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show()

Now, we must write the Fourier series of the output. Several functions
are defined below, culminating in the partial sum psum of the series that
can be used to plot the response.

def a(n):
return 0

def b(n):
return 2/(n*pi)*(1-cos(n*pi))

def c(n,a,b):
return sqrt(a(n)**2+b(n)**2)

def phi(n,a,b):
return arctan2(a(n),b(n))

def yn(n,a,b,c,phi,z,T,t):
return c(n,a,b)*Hm(w(n,T),z)*sin(w(n,T)*t+phi(n,a,b)+Hp(w(n,T),z))

def psum(yn,a,b,c,phi,z,T,t,N):
s = 0
for n in range(1,N+1):
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Figure 03.15: magnitude and phase of the frequency response function for two damping
ratios.

s = s+yn(n,a,b,c,phi,z,T,t)
return s

Now we turn to three plots: one for each input period T. We expect
our output will more closely follow the input for larger T because fewer
significant components will be greater than the cutoff frequency (in this
case, the natural frequency 5 rad/s). We also expect our output to more
closely follow the input when the damping is around 0.707 rather than
when it is around 0.1 because the resonance effects should be absent
(“wide” and “flat”).

N = 200
znow = [.1,.707]
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Tnow = T1
plt.plot(t,u_1)
for zi in znow:

ps = []
for ti in t:

ps.append(psum(yn,a,b,c,phi,zi,Tnow,ti,N))
plt.plot(t,ps)

if save_figures:
tikz_save( # save for LaTeX

'figures/phase_linearity_square_T1.tex',
figureheight='.4\linewidth',
figurewidth='1\linewidth'

)
plt.show()

Tnow = T2
plt.plot(t,u_2)
for zi in znow:

ps = []
for ti in t:

ps.append(psum(yn,a,b,c,phi,zi,Tnow,ti,N))
plt.plot(t,ps)

if save_figures:
tikz_save( # save for LaTeX

'figures/phase_linearity_square_T2.tex',
figureheight='.4\linewidth',
figurewidth='1\linewidth'

)
plt.show()

Tnow = T3
plt.plot(t,u_3)
for zi in znow:

ps = []
for ti in t:

ps.append(psum(yn,a,b,c,phi,zi,Tnow,ti,N))
plt.plot(t,ps)

if save_figures:
tikz_save( # save for LaTeX

'figures/phase_linearity_square_T3.tex',
figureheight='.4\linewidth',
figurewidth='1\linewidth'
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Figure 03.16: square wave inputs with corresponding outputs for ζ = 0.1 and ζ = 0.707.

)
plt.show()
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03.11 Problems for Chapter 03

03.11.1 Design problem
piezoelectric load

sensor Piezoelectric load sensors use the piezoelectric effect of certain materials,
such as pzt, to transduce force applied to them into voltage across them.pzt

These sensors, sometimes called load cells, can be used to measure bothload cells

compression and tension, and have characteristically “high frequency
response,” meaning they respond quickly to input forces, even those that
change quickly.

A typical configuration is shown in Figure 03.17. A force is applid to
a chassis that sandwiches two plates made of piezoelectric material, which
sandwich an electrode.

Figure 03.18 shows a composite model for the devices. It is best to model
the entire system with a single input-output differential equation or transfer
function because it is not known a priori that the cable and charge amplifier
systems will not load the load cell.

Let the load cell produce a source voltage Vp proportional to the input
force f as

Vp = αf (03.55)

where the constant of proportionality is α = 20 mV/kN.

+
−

charge amp
readout

force

force

chassis

load cell

pzt
electrode

pre. bolt

Figure 03.17
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Figure 03.18

Let the piezoelectric material have capacitane C1 = 100 µF and resis-
tance R1 = 1 MΩ. Let the cable have capacitance C2 = 30 pF.

1. Perform a circuit analysis and express the result as a single input-
output differential equation relating the input force f to the output
voltage vo.

2. Define the transfer function from F(s) to Vo(s).
3. Define a MATLAB (or similar) model and plot the magnitude and

phase of the frequency response function for the designs you develop,
below (choose arbitrary R2, R3, and C3 to get started).

4. Design the charge amp by tuning R2, R3, and C3 such that the system
responds to a force step input of 50 N with a settling time of less than
1/2 s. Plot the step response of the system. Hint: use MATLAB’s step
function to generate the step response. Note that this system has two
time constants. Our primary concern in this problem is the “fast”
response to a step and its initial settling time. The feedback capacitor
C3 will slowly discharge via R3, so be careful not to be fooled by the
“slow” decay. It helps to specify the simulation interval manually. For
instance, a one-second time interval should be about right to simulate
your system response. MATLAB’s step function has an option for
specifying the time interval or array.

5. Design the charge amp by tuning R2, R3, and C3 such that the system
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responds to a force sinusoidal input of 50 N at 1 Hz and at 1 kHz
with a dynamic error of < 10%. Consider the “flat” interval of the
frequency response to be the |H(jω)| = 1 value for the purposes of
the dynamic error formula. Sometimes a system like this would
be characterized by a gain equal to the magnitude ratio of this flat
interval.
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Lecture 04.01 Probability and measurement
Probability theory

Probability theory is a well-defined branch of mathematics. Andrey Kol-
mogorov described a set of axioms in 1933 that are still in use today as
the foundation of probability theory.1

We will implicitly use these axioms in our analysis. The interpretationinterpretation of
probability of probability is a contentious matter. Some believe probability quantifies

the frequency of the occurrence of some event that is repeated in a largeevent

number of trials. Others believe it quantifies the state of our knowledge or
belief that some event will occur.

In experiments, our measurements are tightly coupled to probability.
This is apparent in the questions we ask. Here are some examples.

1. How common is a given event?
2. What is the probability we will reject a good theory based on experi-

mental results?
3. How repeatable are the results?
4. How confident are we in the results?
5. What is the character of the fluctuations and drift in the data?
6. How much data do we need?

1For a good introduction to probability theory, see Ash (2008).
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Lecture 04.02 Introduction to set theory
set theory

Set theory is a very useful branch of mathematics for engineers. In
probability theory, we use the language of set theory. For this reason, we
review basic set theory.

A set is a collection of objects. Set theory gives us a way to describe set

these collections. Often, the objects in a set are numbers or sets of numbers.
However, a set could represent collections of zebras and trees and hairballs.
For instance, here are some sets:

A field is a set with special structure. This structure is provided by the field

addition (+) and multiplication (×) operators and their inverses subtraction addition
multiplication
subtraction

(−) and division (÷). The quintessential example of a field is the set of real

division
real numbers

numbers R, which admits these operators, making it a field. The reals R,
the complex numbers C, the integers Z, and the natural numbers2 N are the
fields we typically consider. set membership

Set membership is the belonging of an object to a set. It is denoted with
the symbol ∈, which can be read “is an element of,” for element x and set
X:

For instance, we might say 7 ∈ {1, 7, 2} or 4 /∈ {1, 7, 2}. Or, we might
declare that a is a real number by stating: x ∈ R. set operations

Set operations can be used to construct new sets from established sets.
We consider a few common set operations, now.

The union ∪ of sets is the set containing all the elements of the original union

sets (no repetition allowed). The union of sets A and B is denoted A∪B. For
instance, let A = {1, 2, 3} and B = {−1, 3}; then

The intersection ∩ of sets is a set containing the elements common to all intersection

the original sets. The intersection of sets A and B is denoted A ∩ B. For
instance, let A = {1, 2, 3} and B = {2, 3, 4}; then

2When the natural numbers include zero, we write N0.
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If two sets have no elements in common, the intersection is the empty setempty set

∅ = {}, the unique set with no elements.
The set difference of two setsA and B is the set of elements inA that aren’tset difference

also in B. It is denoted A \ B. For instance, let A = {1, 2, 3} and B = {2, 3, 4}.
Then

A subset ⊆ of a set is a set, the elements of which are contained in thesubset

original set. If the two sets are equal, one is still considered a subset of the
other. We call a subset that is not equal to the other set a proper subset ⊂. Forproper subset

instance, let A = {1, 2, 3} and B = {1, 2}. Then

The complement of a subset is a set of elements of the original set thatcomplement

aren’t in the subset. For instance, if B ⊆ A, then the complement of B,
denoted B is
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Lecture 04.03 Basic probability theory

The sample space Ω of an experiment is the set representing all possible sample space

outcomes of the experiment. If a coin is flipped, the sample space is
Ω = {H, T }, where H is heads and T is tails. If a coin is flipped twice, the
sample space could be

However, the same experiment can have different sample spaces. For
instance, for two coin flips, we could also choose

We base our choice of Ω on the problem at hand.
An event is a subset of the sample space. That is, an event corresponds event

to a yes-or-no question about the experiment. For instance, event A
(remember: A ⊆ Ω) in the coin flipping experiment (two flips) might be
A = {HT, TH}. A is an event that corresponds to the question, “Is the second
flip different than the first?” A is the event for which the answer is “yes.”

04.03.1 Algebra of events

Because events are sets, we can perform the usual set operations with them.

Example 04.03-1 set operations with events

Consider a toss of a single die. We choose the sample space to be
Ω = {1, 2, 3, 4, 5, 6}. Let the following define events.

A ≡ {the result is even} = {2, 4, 6}

B ≡ {the result is greater than 2} = {3, 4, 5, 6}.

Find the following event combinations:

A ∪ B A ∩ B A \ B B \A A \ B.

95 3 September 2018, 17:29:26 04.03 3 1



Chapter 04 Probability, statistics, and estimation Lecture 04.03 Basic probability theory

The event class F is often defined as the set of all subsets of Ω. (It’sevent class

actually more complicated, but we’ll ignore that.) So F is the set of all
possible events given a sample sample spaceΩ. When referring to an event,
we often state that it is an element of F. For instance, we might say an event
A ∈ F.

We’re finally ready to assign probabilities to events. We define the
probability measure P : F → [0, 1] to be a function satisfying the followingprobability

measure conditions.

1. For every event A ∈ F, the probability measure of A is greater than
zero—i.e. P(A) > 0.

2. If an event is the entire sample space, its probability measure is
unity—i.e. if A = Ω, P(A) = 1.

3. If events A1, A2, · · · are disjoint sets (no elements in common), then
P(A1 ∪A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

The three structures we’ve defined thus far—Ω (sample space), F (event
class), and P (probability measure)—are called the probability space (Ω,F, P).probability space

We conclude with the basics by observing four facts that can be proven
from the definitions above.

1.

2.

3.

4.
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Lecture 04.04 Independence and conditional probability

Two events A and B are independent if and only if independent

P(A ∩ B) = P(A)P(B).
If an experimenter must make a judgment without data about the indepen-
dence of events, she bases it on her knowledge of the events, as discussed
in the following example.

Example 04.04-1 independence

Answer the following questions and imperatives.

1. Consider a single fair die rolled twice. What is the probability
that both rolls are 6?

2. What changes if the die is biased by a weight such that P({6}) =
1/7?

3. What changes if the die is biased by a magnet, rolled on a
magnetic dice-rolling tray such that P({6}) = 1/7?

4. What changes if there are two dice, biased by weights such that
for each P({6}) = 1/7, rolled once, both resulting in 6?

5. What changes if there are two dice, biased by magnets such
that for each P({6}) = 1/7, rolled once, both resulting in 6?
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04.04.1 Conditional probability

If events A and B are somehow dependent, we need a way to compute thedependent

probability of B occurring given that A occurs. This is called the conditionalconditional
probability probability of B given A, and is denoted P(B|A). For P(A) > 0, it is defined as

P(B|A) =
P(A ∩ B)
P(A)

. (04.1)

We can interpret this as a restriction of the sample spaceΩ to A; i.e. the new
sample spaceΩ ′ = A ⊆ Ω. Note that if A and B are independent, we obtain
the obvious result:

Example 04.04-2 dependence

Consider two unbiased dice rolled once. Let events A =

{sum of faces = 8} and B = {faces are equal}. What is the probabil-
ity the faces are equal given that their sum is 8?
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Lecture 04.05 Bayes’ theorem

Given two events A and B, Bayes’ theorem (aka Bayes’ rule) states that Bayes’ theorem

P(A|B) = P(B|A)
P(A)

P(B)
. (04.2)

Sometimes this is written

This is a useful theorem for determining a test’s effectiveness. If a test
is performed to determine whether an event has occurred, we might as
questions like “if the test indicates that the event has occurred, what is the
probability it has actually occurred?” Bayes’ theorem can help compute an
answer.

The test can be either positive or negative and this result can be either
true or false .

A A

positive B true false

negative B false true

Table 04.1: test outcome B for event A.

There are four options, then.
Consider an event A and an
event that is a test result B in-
dicating that event A has oc-
curred. Table 04.1 shows these
four possible test outcomes.
Clearly, the desirable result for
any test is that it is true. How-
ever, no test is true 100 percent of the time. So sometimes it is desirable
to err on the side of the false positive, as in the case of a medical diagnos-
tic. Other times, it is more desirable to err on the side of a false negative,
as in the case of testing for defects in manufactured balloons (when a false
negative isn’t a big deal).

Some interesting results can be found from this. For instance, we can
plot, as in Figure 04.1 the relationship between the probability of a positive
test result given that the event actually occurs P(B|A) and the probability
of the event occurring given that the test is positive P(A|B). (Note that, in
both cases, it is the conditional probability of a true positive given some
condition.)

99 3 September 2018, 17:29:26 04.05 3 1



Chapter 04 Probability, statistics, and estimation Lecture 04.05 Bayes’ theorem

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P(B|A)

P
(A

|B
)

P(A) = 0.0

P(A) = 0.01

P(A) = 0.05

P(A) = 0.1

P(A) = 0.2

P(A) = 0.3

P(A) = 0.4

P(A) = 0.5

P(A) = 0.6

P(A) = 0.7

P(A) = 0.8

P(A) = 0.9

P(A) = 1.0

Figure 04.1: the probability that an event A occurred given that a test for it is positive B for
different probabilities that the event A occurs.

Example 04.05-1 Bayes’ theorem

Suppose 0.1% of springs manufactured at a given plant are defective.
Suppose you need to design a test that has probability of 99% that
a part, given that it is indicated defective, is actually so. What
probability should your test have, given that a part is defective, of
indicating that it is actually so?
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Lecture 04.06 Populations, samples, and machine learn-
ing

An experiment’s population is a complete collection of objects that we would population

like to study. These objects can be people, machines, processes, or anything
else we would like to understand experimentally.

Of course, we typically can’t measure all of the population. Instead, we
take a subset of the population—called a sample—and infer the characteris- sample

tics of the entire population from this sample.
However, this inference that the sample is somehow representative of

the population assumes the sample size is sufficiently large and that the
sampling is random. This means selection of the sample should be such random

that no one group within a population are systematically over- or under-
represented in the sample. machine learning

Machine learning is a field that makes extensive use of measurements
and statistical inference. In it, an algorithm is trained by exposure to training

sample data, which is called a training set. The variables measured are training set

called features. Typically, a predictive model is developed that can be used features
predictive modelto extrapolate from the data to a new situation. The methods of statistical

analysis we introduce in this chapter are the foundation of most machine
learning methods.

Example 04.06-1 combat boots

Consider a robot, Pierre, with a particular gravitas and sense of style.
He seeks just the right-looking pair of combat boots for wearing in
the autumn rains. Pierre is to purchase the boots online via image
recognition, and decides to gather data by visiting a hipster hangout
one evening to train his style. For contrast, he also watches footage
of a White Nationalist rally, focusing special attention on the boots of
wearers of khakis and polos. Comment on Pierre’s methods.
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Lecture 04.07 Random variables

Probabilities are useful even when they do not deal strictly with events. It
often occurs that we measure something that has randomness associated
with it. We use random variables to represent these measurements.

A random variable X : Ω→ R is a function that maps an outcome ω fromrandom variable

the sample space Ω to a real number x ∈ R. A random variable will be
denoted with a capital letter (e.g. X and K) and a specific value that it maps
to (the image) will be denoted with a lowercase letter (e.g. x and k).

A discrete random variable K is one that takes on discrete values. Adiscrete random
variable continuous random variable X is one that takes on continuous values.

continuous random
variable Example 04.07-1 dice again

Roll two unbiased dice. Let K be a random variable representing the
sum of the two. Let P(k) be the probability of the result k ∈ K. Plot
and interpret P(k).

r.v. R

Ω

outcome ω

x

X

Figure 04.2: a random variable X maps an outcome ω ∈ Ω to a x ∈ R.
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Example 04.07-2 Johnson-Nyquist noise

A resistor at nonzero temperature without any applied voltage
exhibits an interesting phenomenon: its voltage randomly fluctuates.
This is called Johnson-Nyquist noise and is a result of thermal excitation
of charge carriers (electrons, typically). For a given resistor and
measurement system, let the probability density function fV of the
voltage V across an unrealistically hot resistor be

fV (V) =
1√
π
e−V

2

.

Plot and interpret the meaning of this function.
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Lecture 04.08 Probability density and mass functions

Consider an experiment that measures a random variable. We can plot the
relative frequency of the measurand landing in different “bins” (ranges of
values). This is called a frequency distribution or a probability mass functionfrequency

distribution
probability mass

function

(PMF).
Consider, for instance, a probability mass function as plotted in Fig-

ure 04.3, where a frequency ai can be interpreted as an estimate of the
probability of the measurand being in the ith interval. The sum of the fre-
quencies must be unity:

with k being the number of bins.
The frequency density distribution is similar to the frequency distribution,frequency density

distribution but with ai 7→ ai/∆x, where ∆x is the bin width.
If we let the bin width approach zero, we derive the probability densityprobability density

function function (PDF)

f(x) = lim
k→∞
∆x→0

k∑
j=1

aj/∆x. (04.3)

We typically think of a probability density function f, like the one in
Figure 04.4 as a function that can be integrated over to find the probability
of the random variable (measurand) being in an interval [a, b]:

P(x ∈ [a, b]) =

∫b
a

f(χ)dχ. (04.4)

Of course,

Figure 04.3: plot of a probability mass function.
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Figure 04.4: plot of a probability density function.

We now consider a common PMF and a common PDF.

04.08.1 Binomial PMF

Consider a random binary sequence of length n such that each element is a
random 0 or 1, generated independently, like

(1, 0, 1, 1, 0, · · · , 1, 1). (04.5)

Let events {1} and {0} be mutually exclusive and exhaustive and P({1}) = p.
The probability of the sequence above occurring is

There are n choose k, (
n

k

)
=

n!
k!(n− k)!

, (04.6)

possible combinations of k ones for n bits. Therefore, the probability of any
combination of k ones in a series is

f(k) =

(
n

k

)
pk(1− p)n−k. (04.7)

We call Equation 04.7 the binomial distribution PDF. binomial
distribution PDF
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Figure 04.5: binomial PDF for n = 100 measurements and different values of P({1}) = p, the
probability of a measurement error. The plot is generated by the Matlab code of Figure 04.6.

Example 04.08-1 Binomial PMF

Consider a field sensor that fails for a given measurement with
probability p. Given n measurements, plot the binomial PMF as a
function of k failed measurements for a few different probabilities of
failure p ∈ [0.04, 0.2, 0.5].

Figure 04.6 shows Matlab code for constructing the PDFs plotted in
Figure 04.5. Note that the symmetry is due to the fact that events {1}

and {0} are mutually exclusive and exhaustive.

04.08.2 Gaussian PDF

The Gaussian or normal random variable x has PDFGaussian or normal
random variable

f(x) =
1

σ
√
2π

exp
−(x− µ)2

2σ2
. (04.8)

Although we’re not quite ready to understand these quantities in detail, it
can be shown that the parameters µ and σ have the following meanings:

• µ is the mean of x,mean

• σ is the standard deviation of x, andstandard deviation

• σ2 is the variance of x.variance
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%% parameters
n = 100;
k_a = linspace(1,n,n);
p_a = [.04,.25,.5,.75,.96];

%% binomial function
f = @(n,k,p) nchoosek(n,k)*p^k*(1-p)^(n-k);

% loop through to construct an array
f_a = NaN*ones(length(k_a),length(p_a));
for i = 1:length(k_a)

for j = 1:length(p_a)
f_a(i,j) = f(n,k_a(i),p_a(j));

end
end

%% plot
figure
colors = jet(length(p_a));
for j = 1:length(p_a)

bar(...
k_a,f_a(:,j),...
'facecolor',colors(j,:),...
'facealpha',0.5,...
'displayname', ['$p = ',num2str(p_a(j)),'$']...

); hold on
end
leg = legend('show','location','north');
set(leg,'interpreter','latex')
hold off
xlabel('number of ones in sequence k')
ylabel('probability')
xlim([0,100])

Figure 04.6: a Matlab script for generating binomial PMFs.
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−3 −2 −1 0 1 2 3

random variable x

Figure 04.7: PDF for Gaussian random variable x, mean µ = 0, and standard deviation
σ = 1/

√
2.

Consider the “bell-shaped” Gaussian PDF in Figure 04.7. It is always
symmetric. The mean µ is its central value and the standard deviation σ
is directly related to its width. We will continue to explore the Gaussian
distribution in the following lectures, especially in Lecture 04.12.
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Lecture 04.09 Expectation

Recall that a random variable is a function X : Ω → R that maps from
the sample space to the reals. Random variables are the arguments
of probability mass functions (PMFs) and probability density functions
(PDFs).

The expected value (or expectation) of a random variable is akin to its expected value
expectation“average value” and depends on its PMF or PDF. The expected value of

a random variable X is denoted 〈x〉 or E(X). There are two definitions of the
expectation, one for a discrete random variable, the other for a continuous
random variable. Before we define, them, however, it is useful to predefine
the most fundamental property of a random variable, its mean. mean

Definition 04.09.1: mean

The mean of a random variable X is defined as

mX = E(X).

Let’s begin with a discrete random variable.

Definition 04.09.2: expectation of a discrete random variable

Let K be a discrete random variable and f its PMF. The expected value
of K is defined as

E(K) =
∑
∀k
kf(k).

Example 04.09-1 expectation of a discrete random variable

Given a discrete random variable K with PMF shown below, what is
its mean µK?
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Let us now turn to the expectation of a continuous random variable.

Definition 04.09.3: expectation of a continuous random variable

Let X be a continuous random variable and f its PDF. The expected
value of X is defined as

E(X) =

∫∞
−∞ xf(x)dx.

Example 04.09-2 expectation of a continuous random variable

Given a continuous random vari-
able X with Gaussian PDF f, what
is the expected value of X?

random variable x
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Due to its sum or integral form, the expected value E(·) has some
familiar properties for random variables X and Y and reals a and b.

E(a) = a (04.9a)
E(X+ a) = E(X) + a (04.9b)
E(aX) = aE(X) (04.9c)

E(E(X)) = E(X) (04.9d)
E(aX+ bY) = aE(X) + bE(Y). (04.9e)
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Lecture 04.10 Central moments

Given a probability mass function (PMF) or probability density function
(PDF) of a random variable, several useful parameters of the random
variable can be computed. These are called central moments, which quantifycentral moments

parameters relative to its mean.

Definition 04.10.1: central moments

The nth central moment of random variable X, with PDF f, is defined
as

E((X− µX)
n) =

∫∞
−∞(x− µX)nf(x)dx.

For discrete random variable K with PMF f,

E((K− µK)
n) =

∞∑
∀k

(k− µK)
nf(k).

Example 04.10-1 first moment

Prove that the first moment of random variable X is zero.

The second central moment of random variable X is called the variancevariance

and is denoted

σ2X or Var (X) or E((X− µX)
2). (04.10)

The variance is a measure of the width or spread of the PMF or PDF. We
usually compute the variance with the formula
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Other properties of variance include, for real constant c,

Var (c) = 0 (04.11)
Var (X+ c) = Var (X) (04.12)

Var (cX) = c2Var (X) . (04.13)

The standard deviation is defined as standard deviation

Although the variance is mathematically more convenient, the standard
deviation has the same physical units as X, so it is often the more physically
meaningful quantity. Due to its meaning as the width or spread of the
probability distribution, and its sharing of physical units, it is a convenient
choice for error bars on plots of a random variable.

The skewness Skew (X) is a normalized third central moment: skewness

Skew (X) =
E((X− µX)

3)

σ3X
. (04.14)

Skewness is a measure of asymmetry of a random variable’s PDF or PMF. asymmetry

For a symmetric PMF or PDF, such as the Gaussian PDF, Skew (X) = 0.
The kurtosis Kurt (X) is a normalized fourth central moment: kurtosis

Kurt (X) =
E((X− µX)

4)

σ4X
. (04.15)

Skewness is a measure of the tailedness of a random variable’s PDF or PMF. tailedness

“Heavier” tails yield higher kurtosis.
A Gaussian random variable has PDF with kurtosis 3. Given that for

Gaussians both skewness and kurtosis have nice values (0 and 3), we
can think of skewness and and kurtosis as measures of similarity to the
Gaussian PDF.
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Lecture 04.11 Estimation of sample mean and variance

Ahem.3

04.11.0.1 Estimation and sample statistics

The mean and variance definitions, above, apply only to a random variable
for which we have a theoretical probability distribution. Typically, it is not
until after having performed many measurements of a random variable
that we can assign a good distribution model. Until then, measurements
can help us estimate aspects of the data. We usually start by estimating
basic parameters such as mean and variance before estimating a probability
distribution.

There are two key aspects to randomness in the measurement of a
random variable. First, of course, there is the underlying randomness
with its probability distribution, mean, standard deviation, etc., which we
call the population statistics. Second, there is the statistical variability that
is due to the fact that we are estimating the random variable’s statistics—
called its sample statistics—from some sample. Statistical variability are
decreased with greater sample size and number of samples, whereas the
underlying randomness of the random variable does not decrease. Instead,
our estimates of its probability distribution and statistics improve.

04.11.0.2 Sample mean, variance, and standard deviation

The arithmetic mean or sample mean of a measurand with sample size N,
represented by random variable X, is defined as

x =
1

N

N∑
i=1

xi. (04.16)

If the sample size is large, x → mX (the sample mean approaches the
mean). The population mean is another term for the mean µX, which is equal
to

3The source for this exercise lecture is in a Matlab kernel Jupyter notebook. For more
information, see jupyter.org. See ricopic.one/measurement/notebooks for the source code
notebook. Note, however, that running the Matlab code in the usual m-file environment is
much easier.
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mX = lim
N→∞ 1

N

N∑
i=1

xi. (04.17)

Recall that the definition of the mean is mX = E(x).
The sample variance of a measurand represented by random variable X

is defined as

S2X =
1

N− 1

N∑
i=1

(xi − x)
2. (04.18)

If the sample size is large, S2X → σ2X (the sample variance approaches the
variance). The population variance is another term for the variance σ2X, and
can be expressed as

σ2X = lim
N→∞ 1

N− 1

N∑
i=1

(xi − x)
2. (04.19)

Recall that the definition of the variance is σ2X = E((X−mX)
2).

The sample standard deviation of a measurand represented by random
variable X is defined as

SX =
√
S2X. (04.20)

If the sample size is large, SX → σX (the sample standard deviation
approaches the standard deviation). The population standard deviation is
another term for the standard deviation σX, and can be expressed as

σX = lim
N→∞

√
S2X. (04.21)

Recall that the definition of the standard deviation is σX =
√
σ2X.

04.11.0.3 Sample statistics as random variables

There is an ambiguity in our usage of the term “sample.” It can mean just
one measurement or it can mean a collection of measurements gathered
together. Hopefully, it is clear from context.
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In the latter sense, often we collect multiple samples, each of which has
its own sample mean Xi and standard deviation SXi . In this situation, Xi
and SXi are themselves random variables (meta af, I know). This means
they have their own sample means Xi and SXi and standard deviations SXi
and SSXi .

The mean of means Xi is equivalent to a mean with a larger sample size
and is therefore our best estimate of the mean of the underlying random
process. The mean of standard deviations SXi is our best estimate of
the standard deviation of the underlying random process. The standard
deviation of means SXi is a measure of the spread in our estimates of the
mean. It is our best estimate of the standard deviation of the statistical
variation and should therefore tend to zero as sample size and number of
samples increases. The standard deviation of standard deviations SSXi is
a measure of the spread in our estimates of the standard deviation of the
underlying process. It should also tend to zero as sample size and number
of samples increases.

Let N be the size of each sample. It can be shown that the standard
deviation of the means SXi can be estimated from a single sample standard
deviation:

SXi ≈
SXi√
N
. (04.22)

This shows that as the sample size N increases, the statistical variability
of the mean decreases (and in the limit approaches zero).

04.11.0.4 Nonstationary signal statistics

The sample mean, variance, and standard deviation definitions, above,
assume the random process is stationary—that is, its population mean does
not vary with time. However, a great many measurement signals have
populations that do vary with time, i.e. they are nonstationary. Sometimes
the nonstationarity arises from a “drift” in the dc value of a signal or some
other slowly changing variable. But dynamic signals can also change in a
recognizable and predictable manner, as when, say, the temperature of a
room changes when a window is opened or when a water level changes
with the tide.

Typically, we would like to minimize the effect of nonstationarity on the
signal statistics. In certain cases, such as drift, the variation is a nuissance
only, but other times it is the point of the measurement.
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Two common techniques are used, depending on the overall type of
nonstationarity. If it is periodic with some known or estimated period,
the measurement data series can be “folded” or “reshaped” such that the
ith measurement of each period corresponds to the ith measurement of all
other periods. In this case, somewhat counterintuitively, we can consider
the ith measurements to correspond to a sample of size N, where N is the
number of periods over which measurements are made.

When the signal is aperiodic, we often simply divide it into “small”
(relative to its overall trend) intervals over which statistics are computed,
separately.

Note that in this discussion, we have assumed that the nonstationarity
of the signal is due to a variable that is deterministic (not random).

04.11.0.5 Example: measurement of Gaussian noise on nonstationary signal

Consider the measurement of the temperature inside a desktop computer
chassis via an inexpensive thermistor, a resistor that changes resistance with
temperature. The processor and power supply heat the chassis in a manner
that depends on processing demand. For the test protocol, the processors
are cycled sinusoidally through processing power levels at a frequency of
50 mHz for nT = 12 periods and sampled at 1 Hz. Assume a temperature
fluctuation between about 20 and 50 C and Gaussian noise with standard
deviation 4 C. Consider a sample to be the multiple measurements of a
certain instant in the period.

1. Generate and plot simulated temperature data as a time series and
as a histogram or frequency distribution. Comment on why the
frequency distribution sucks.

2. Compute the sample mean and standard deviation for each sample in
the cycle.

3. Subtract the mean from each sample in the period such that each
sample distribution is centered at zero. Plot the composite frequency
distribution of all samples, together. This represents our best estimate
of the frequency distribution of the underlying process.

4. Plot a comparison of the theoretical mean, which is 35, and the sample
mean of means with an error bar. Vary the number of samples nT and
comment on its effect on the estimate.

5. Plot a comparison of the theoretical standard deviation and the
sample mean of sample standard deviations with an error bar. Vary
the number of samples nT and comment on its effect on the estimate.
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6. Plot the sample means over a single period with error bars of ± one
sample standard deviation of the means. This represents our best
estimate of the sinusoidal heating temperature. Vary the number of
samples nT and comment on the estimate.

clear; close all; % clear kernel

Generate the temperature data The temperature data can be generated
by constructing an array that is passed to a sinusoid, then “randomized”
by Gaussian random numbers. Note that we add 1 to np and n to avoid the
sneaky fencepost error.

f = 50e-3; % Hz ... sinusoid frequency
a = 15; % C ... amplitude of oscillation
dc = 35; % C ... dc offset of oscillation
fs = 1; % Hz ... sampling frequency
nT = 12; % number of sinusoid periods
s = 4; % C ... standard deviation
np = fs/f+1; % number of samples per period
n = nT*np+1; % total number of samples

t_a = linspace(0,nT/f,n); % time array
sin_a = dc + a*sin(2*pi*f*t_a); % sinusoidal array
rng(43); % seed the random number generator
noise_a = s*randn(size(t_a)); % Gaussian noise
signal_a = sin_a + noise_a; % sinusoid + noise

Now that we have an array of “data,” we’re ready to plot.

h = figure;
p = plot(t_a,signal_a,'o-',...

'Color',[.8,.8,.8],...
'MarkerFaceColor','b',...
'MarkerEdgeColor','none',...
'MarkerSize',3);

xlabel('time (s)');
ylabel('temperature (C)');
hgsave(h,'figures/temp');

This is something like what we might see for continuous measurement
data. Now, the histogram.
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Figure 04.8: temperature over time
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Figure 04.9: a poor histogram due to unstationarity of the signal.

h = figure;
histogram(signal_a,...

30, ... % number of bins
'normalization','probability'... % for PMF

);
xlabel('temperature (C)')
ylabel('probability')
hgsave(h,'figures/temp');

This sucks because we plot a frequency distribution to tell us about the
random variation, but this data includes the sinusoid.
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Sample mean, variance, and standard deviation To compute the sample
mean µ and standard deviation s for each sample in the period, we must
“pick out” the nT data points that correspond to each other. Currently,
they’re in one long 1 × n array signal_a. It is helpful to reshape the data
so it is in an nT × np array, which each row corresponding to a new period.
This leaves the correct points aligned in columns. It is important to note that
we can do this “folding” operation only when we know rather precisely
the period of the underlying sinusoid. It is given in the problem that it is
a controlled experiment variable. If we did not know it, we would have to
estimate it, too, from the data.

signal_ar = reshape(signal_a(1:end-1)',[np,nT])'; % reshape
size(signal_ar) % check size
signal_ar(1:3,1:4) % print first three rows of first four columns

ans =

12 21

ans =

30.2718 40.0946 40.8341 44.7662
40.1836 37.2245 49.4076 46.1137
40.0571 40.9718 46.1627 41.9145

Define the mean, variance, and standard deviation functions as “anon-
mymous functions.” We “roll our own.” These are not as efficient or flexible
as the built-in Matlab functions mean, var, and std, which should typically
be used.

my_mean = @(vec) sum(vec)/length(vec);
my_var = @(vec) sum((vec-my_mean(vec)).^2)/(length(vec)-1);
my_std = @(vec) sqrt(my_var(vec));

Now the sample mean, variance, and standard deviations can be
computed. We proceed by looping through each column of the reshaped
signal array.

mu_a = NaN*ones(1,np); % initialize mean array
var_a = NaN*ones(1,np); % initialize var array
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s_a = NaN*ones(1,np); % initialize std array

for i = 1:np % for each column
mu_a(i) = my_mean(signal_ar(:,i));
var_a(i) = my_var(signal_ar(:,i));
s_a(i) = sqrt(var_a(i)); % touch of speed

end

Composite frequency distribution The columns represent samples. We
want to subtract the mean from each column. We use repmat to reproduce
mu_a in nT rows so it can be easily subtracted.

signal_arz = signal_ar - repmat(mu_a,[nT,1]);
size(signal_arz) % check size
signal_arz(1:3,1:4) % print first three rows of first four columns

ans =

12 21

ans =

-5.0881 0.9525 -0.2909 -1.5700
4.8237 -1.9176 8.2826 -0.2225
4.6972 1.8297 5.0377 -4.4216

Now that all samples have the same mean, we can lump them into
one big bin for the frequency distribution. There are some nice built-in
functions to do a quick reshape and fit.

% resize
signal_arzr = reshape(signal_arz,[1,nT*np]);
size(signal_arzr) % check size
% fit
pdfit_model = fitdist(signal_arzr','normal'); % do a fit
x_a = linspace(-15,15,100);
pdfit_a = pdf(pdfit_model,x_a);
pdf_a = normpdf(x_a,0,s); % theoretical pdf

ans =

1 252
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Figure 04.10: PMF and estimated and theoretical PDFs.

Plot!

h = figure;
histogram(signal_arzr,...

round(s*sqrt(nT)), ... % number of bins
'normalization','probability'... % for PMF

);
hold on
plot(x_a,pdfit_a,'b-','linewidth',2); hold on
plot(x_a,pdf_a,'g--','linewidth',2);
legend('pmf','pdf est.','pdf')
xlabel('zero-mean temperature (C)')
ylabel('probability mass/density')
hgsave(h,'figures/temp');

Means comparison The sample mean of means is simply the following.

mu_mu = my_mean(mu_a)

mu_mu =

35.1175

The standard deviation that works as an error bar, which should reflect
how well we can estimate the point plotted, is the standard deviation of the
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means. It is difficult to compute this directly for a nonstationary process.
We use the estimate given above and improve upon it by using the mean of
standard deviations instead of a single sample’s standard deviation.

s_mu = mean(s_a)/sqrt(nT)

s_mu =

1.1580

Now, for the simple plot.

h = figure;
bar(mu_mu); hold on % gives bar
errorbar(mu_mu,s_mu,'r','linewidth',2) % gives error bar
ax = gca; % current axis
ax.XTickLabels = {'$\overline{\overline{X}}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');

Standard deviations comparison The sample mean of standard devia-
tions is simply the following.

mu_s = my_mean(s_a)

mu_s =

4.0114

The standard deviation that works as an error bar, which should reflect
how well we can estimate the point plotted, is the standard deviation of the
standard deviations. We can compute this directly.

s_s = my_std(s_a)

s_s =

0.8495

Now, for the simple plot.
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Figure 04.11: (left) sample mean of sample means and (right) sample standard deviation of
sample means.

h = figure;
bar(mu_s); hold on % gives bar
errorbar(mu_s,s_s,'r','linewidth',2) % gives error bar
ax = gca; % current axis
ax.XTickLabels = {'$\overline{S_X}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');

Plot a period with error bars Plotting the data with error bars is fairly
straightforward with the built-in errorbar function. The main question
is “which standard deviation?” Since we’re plotting the means, it makes
sense to plot the error bars as a single sample standard deviation of the
means.

h = figure;
e1 = errorbar(t_a(1:np),mu_a,s_mu*ones(1,np),'b'); hold on
t_a2 = linspace(0,1/f,101);
e2 = plot(t_a2,dc + a*sin(2*pi*f*t_a2),'r-');
xlim([t_a(1),t_a(np)])
grid on
xlabel('folded time (s)')
ylabel('temperature (C)')
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Figure 04.12: sample means over a period.

legend([e1 e2],'sample mean','population mean','Location','NorthEast')
hgsave(h,'figures/temp');
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Lecture 04.12 Confidence

Ahem.4

One must have it to give a lecture named it. Confidence is used in the
common sense, although we do endow it with a mathematical definition to
scare business majors, who aren’t actually impressed, but indifferent. Ap-
proximately: if, under some reasonable assumptions (probabilistic model),
we estimate the probability of some event to be P%, we say we have P%
confidence in it. I mean, business majors are all, “Supply and demand?
Let’s call that a ‘law,’ ” so I think we’re even.

So we’re back to computing probability from distributions—probability
density functions (PDFs) and probability mass functions (PMFs). Usually
we care most about estimating the mean of our distribution. Recall from
the previous lecture that when several samples are taken, each with its
own mean, the mean is itself a random variable—with a mean, of course.
Meanception.

But, more importantly (just kidding—equally so), the mean has a
probability distribution of its own. The central limit theorem has as one of
its implications that, as the sample size N gets large, regardless of the sample
distributions, this distribution of means approaches the Gaussian distribution.

But sometimes I always worry I’m being lied to, so let’s check.

clear; close all; % clear kernel

04.12.1 Generate some data to test the central limit theorem

Data can be generated by constructing an array using a (seeded for
consistency) random number generator. Let’s use a uniformly distributed
PDF between 0 and 1.

N = 150; % sample size (number of measurements per sample)
M = 120; % number of samples
n = N*M; % total number of measurements
mu_pop = 0.5; % because it's a uniform PDF between 0 and 1

rng(11); % seed the random number generator

4The source for this exercise lecture is in a Matlab kernel Jupyter notebook. For more
information, see jupyter.org. See ricopic.one/measurement/code for the source code in
both Jupyter notebook and Matlab m-file form. Note, however, that simply running the
Matlab code in the usual m-file environment is easier to get started.
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Figure 04.13: raw data with colors corresponding to samples.

signal_a = rand(N,M); % uniform PDF
size(signal_a) % check the size

ans =

150 120

Let’s take a look at the data by plotting the first ten samples (columns),
as shown in Figure 04.13.

This is something like what we might see for continuous measurement
data. Now, the histogram.

This isn’t a great plot, but it shows roughly that each sample is fairly
uniformly distributed.

04.12.2 Sample statistics

Now let’s check out the sample statistics. We want the sample mean and
standard deviation of each column. Let’s use the built-in functions mean
and std.

mu_a = mean(signal_a,1); % mean of each column
s_a = std(signal_a,1); % std of each column

Now we can compute the mean statistics, both the mean of the mean X
and the standard deviation of the mean sX, which we don’t strictly need for
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Figure 04.14: a histogram showing the approximately uniform distribution of each sample
(color).

this part, but we’re curious. We choose to use the direct estimate instead of
the sX/

√
N formula, but they should be close.

mu_mu = mean(mu_a)
s_mu = std(mu_a)

mu_mu =

0.4987

s_mu =

0.0236

04.12.3 The truth about sample means

It’s the moment of truth. Let’s look at the distribution.
This looks like a Gaussian distribution about the mean of means, so I

guess the central limit theorem is legit.

04.12.4 Gaussian and probability

We already know how to compute the probability P a value of a random
variable X lies in a certain interval from a PMF or PDF (the sum or the
integral, respectively). This means that, for sufficiently large sample size
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Figure 04.15: a histogram showing the approximately normal distribution of the means.

N such that we can assume from the central limit theorem that the sample
means xi are normally distributed, the probability a sample mean value xi is
in a certain interval is given by integrating the Gaussian PDF. The Gaussian
PDF for random variable Y representing the sample means is

where µ is the population mean and σ is the population standard
deviation.

The integral of f over some interval is the probability a value will be
in that interval. Unfortunately, that integral is uncool. It gives rise to the
definition of the error function, which, for the Gaussian random variable Y,
is

This expresses the probability a sample mean being in the interval
[−yb, yb] if Y has mean 0 and variance 1/2.

Matlab has this built-in as erf, shown in Figure 04.16.
We could deal directly with the error function, but most people don’t

and we’re weird enough, as it is. Instead, people use the Gaussian cumulative
distribution function Φ : R→ R, which is defined as
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Figure 04.16: the error function.

and which expresses the probability of a Gaussian random variable Z
with mean 0 and standard deviation 1 taking on a value in the interval
(−∞, z].

That’s great and all, but occasionally we have Gaussian random vari-
ables with nonzero means and nonunity standard deviations. It turns out
we can shift any Gaussian random variable by its mean and scale it by its
standard deviation to make it have zero mean and standard deviation. We
can then use Φ and interpret the results as being relative to the mean and
standard deviation, using phrases like “the probability it is within two stan-
dard deviations of its mean.” The transformed random variable Z and its
values z are sometimes called the z-score. For a particular value x of a ran-
dom variable X, we can compute its z-score (or value z of random variable
Z) with the formula

and compute the probability of X taking on a value within the interval,
say, x ∈ [xb−, xb+] from the table. (Sample statistics X and SX are
appropriate when population statistics are unknown.)

For instance, compute the probability a Gaussian random variable X
with µX = 5 and σX = 2.34 takes on a value within the interval x ∈ [3, 6].
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Figure 04.17: the Gaussian PDF and CDF for z-scores.

1. Compute the z-score of each endpoint of the interval:

2. Look up the CDF values for z3 and z6, which are Φ(z3) = 0.1977 and
Φ(z6) = 0.6664.

3. The CDF values correspond to the probabilities x < 3 and x < 6.
Therefore, to find the probability x lies in that interval, we subtract
the lower bound probability:
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So there is a 46.89% probability, and therefore we have 46.89%
confidence, that x ∈ [3, 6].

Often we want to go the other way, estimating the symmetric interval
[xb−, xb+] for which there is a given probability. In this case, we first look
up the z-score corresponding to a certain probability. For concreteness,
given the same population statistics above, let’s find the symmetric interval
[xb−, xb+] over which we have 90% confidence. From the table, we want
two, symmetric z-scores that have CDF-value difference 0.9. Or, in maths,

Due to the latter relation and the additional fact that the Gaussian CDF
has antisymmetry,

Adding the two Φ equations,

and Φ(zb−) = 0.05. From the table, these correspond (with a linear
interpolation) to zb = zb+ = −zb− ≈ 1.645. All that remains is to solve
the z-score formula for x:

From this,
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and X has a 90% confidence interval [1.151, 8.849].

04.12.5 Example: Gaussian confidence for a mean

Consider the data set generated above. What is our 95% confidence interval
in our estimate of the mean?

Assuming we have a sufficiently large data set, the distribution of
means is approximately Gaussian. Following the same logic as above, we
need z-score that gives an upper CDF value of . From
the table, we obtain the zb = zb+ = −zb−, below.

z_b = 1.96;

Now we can estimate the mean using our sample and mean statistics,

mu_x_95 = mu_mu + [-z_b,z_b]*s_mu

mu_x_95 =

0.4526 0.5449

This is our 95% confidence interval in our estimate of the mean.
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Lecture 04.13 Student confidence

The central limit theorem tells us that, for large sample size N, the
distribution of the means is Gaussian. However, for small sample size, the
Gaussian isn’t as good of an estimate. Student’s t-distribution is superiorStudent’s

t-distribution for lower sample size and equivalent at higher sample size. Technically, if
the population standard deviation σX is known, even for low sample size
we should use the Gaussian distribution. However, this rarely arises in
practice, so we can usually get away with an “always t” approach.

A way that the t-distribution accounts for low-N is by having an entirely
different distribution for each N (seems a bit of a cheat, to me). Actually,
instead ofN, it uses the degrees of freedom ν, which isNminus the number ofdegrees of freedom

parameters required to compute the statistic. Since the standard deviation
requires only the mean, for most of our cases, ν = N− 1.

As with the Gaussian distribution, the t-distribution’s integral is diffi-
cult to calculate. Typically, we will use a t-table, such as the one given here.
There are three points of note.

1. Since we are primarily concerned with going from probability/confi-
dence values (e.g. P% probability/confidence) to intervals, typically
there is a column for each probability.

2. The extra parameter ν takes over one of the dimensions of the table
because three-dimensional tables are illegal.

3. Many of these tables are “two-sided,” meaning their t-scores and
probabilities assume you want the symmetric probability about the
mean over the interval [−tb, tb], where tb is your t-score bound.

Consider the following example.

04.13.1 Example: confidence interval

Write a Matlab script to generate a data set with 200 samples and sample
sizes N ∈ {10, 20, 100} using any old distribution. Compare the distribution
of the means for the different N. Use the sample distributions and a t-table
to compute 99% confidence intervals.

Generate the data set.

M = 200; % # of samples
N_a = [10,20,100]; % sample sizes

mu = 27; % population mean
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sigma = 9; % population std

rng(1) % seed random number generator
data_a = mu + sigma*randn(N_a(end),M); % normally distributed
size(data_a) % check size
data_a(1:10,1:5) % check first 10 rows and first five columns

ans =

100 200

ans =

21.1589 30.2894 27.8705 30.7835 28.3662
37.6305 17.1264 28.2973 24.0811 34.3486
20.1739 44.3719 43.7059 39.0699 32.2002
17.0135 32.6064 36.9030 37.9230 36.5747
19.3900 32.9156 23.7230 22.4749 19.7709
21.8460 13.8295 31.2479 16.9527 34.1876
21.9719 34.6854 19.4480 18.7014 24.1642
28.6054 32.2244 22.2873 26.9906 37.6746
25.2282 18.7326 14.5011 28.3814 27.7645
32.2780 34.1538 27.0382 18.8643 14.1752

Compute the means for different sample sizes.

mu_a = NaN*ones(length(N_a),M);
for i = 1:length(N_a)

mu_a(i,:) = mean(data_a(1:N_a(i),1:M),1);
end

Plotting the distribution of the means yields Figure 04.18.
It makes sense that the larger the sample size, the smaller the spread.

A quantitative metric for the spread is, of course, the standard deviation of
the means for each sample size.

S_mu = std(mu_a,0,2)

S_mu =

2.8365
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Figure 04.18: a histogram showing the distribution of the means for each sample size.
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Look up t-table values for different sample sizes and 99% confidence.
Use these, the mean of means, and the standard deviation of means to
compute the 99% confidence interval for each N.

t_a = [3.25,2.861,2.626];
for i = 1:length(N_a)

interval = mean(mu_a(i,:)) + [-1,1]*t_a(i)*S_mu(i);
disp(sprintf('interval for N = %i: ',N_a(i)))
disp(interval)

end

interval for N = 10:
17.8786 36.3156

interval for N = 20:
20.9567 32.9261

interval for N = 100:
24.4397 29.7426

As expected, the larger the sample size, the smaller the interval over
which we have 99% confidence in the estimate.
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Lecture 04.14 Multivariate probability and correlation

Thus far, we have considered probability density and mass functions (PDFs
and PMFs) of only one random variable. But, of course, often we measure
multiple random variables X1, X2, . . . , Xn during a single event, meaning a
measurement consists of determining values x1, x2, . . . , xn of these random
variables.

We can consider an n-tuple of continuous random variables to form a
sample space Ω = Rn on which a multivariate function f : Rn → R, called
the joint PDF assigns a probability density to each outcome x ∈ Rn. The joint PDF

joint PDF must be greater than or equal to zero for all x ∈ Rn, the multiple
integral overΩmust be unity, and the multiple integral over a subset of the
sample space A ⊂ Ω is the probability of the event A.

We can consider an n-tuple of discrete random variables to form a
sample space Nn0 on which a multivariate function f : Nn0 → R, called the
joint PMF assigns a probability to each outcome x ∈ Nn0 . The joint PMF joint PMF

must be greater than or equal to zero for all x ∈ Nn0 , the multiple sum over
Ω must be unity, and the multiple sum over a subset of the sample space
A ⊂ Ω is the probability of the event A.

Let’s visualize this by plotting a bivariate Gaussian using Matlab’s
mvnpdf function. The result is Figure 04.19. Note how the means and
standard deviations affect the distribution.

mu = [10,20]; % means
Sigma = [1,0;0,.2]; % cov ... we'll talk about this
x1_a = linspace(...

mu(1)-5*sqrt(Sigma(1,1)),...
mu(1)+5*sqrt(Sigma(1,1)),...
50);

x2_a = linspace(...
mu(2)-5*sqrt(Sigma(2,2)),...
mu(2)+5*sqrt(Sigma(2,2)),...
50);

[X1,X2] = meshgrid(x1_a,x2_a);
f = mvnpdf([X1(:) X2(:)],mu,Sigma);
f = reshape(f,length(x2_a),length(x1_a));

h = figure;
p = surf(x1_a,x2_a,f);
xlabel('$x_1$','interpreter','latex')
ylabel('$x_2$','interpreter','latex')
zlabel('$f(x_1,x_2)$','interpreter','latex')
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Figure 04.19: two-variable Gaussian PDF.

shading interp
hgsave(h,'figures/temp');

04.14.1 Marginal probability

The marginal PDF of a multivariate PDF is the PDF of some subspace of Ωmarginal PDF

after one or more variables have been “integrated out,” such that a fewer
number of random variables remain. Of course, these marginal PDFs must
have the same properties of any PDF, such as integrating to unity.

Let’s demonstrate this by numerically integrating over x2 in the bivari-
ate Gaussian, above.

f1 = trapz(x2_a,f',2); % trapezoidal integration

Plotting this yields Figure 04.20.
We should probably verify that this integrates to one.

disp(['integral over x_1 = ',sprintf('%0.7f',trapz(x1_a,f1))])

integral over x_1 = 0.9999988

Not bad.

138 3 September 2018, 17:29:26 04.14 3 2



Chapter 04 Probability, statistics, and estimationLecture 04.14 Multivariate probability and correlation

6 8 10 12 14
0

0.1

0.2

0.3

0.4

x1

g
(x
1
)
=
∫ ∞ −
∞f

(x
1
,x
2
)d
x
2

Figure 04.20: marginal Gaussian PDF g(x1).

04.14.2 Covariance

Very often, especially in machine learning or artificial intelligence applications, machine learning
artificial
intelligence

the question about two random variables X and Y is: how do they co-vary?
That is what is their covariance, defined as

covariance

Note that when X = Y, the covariance is just the variance. When a
covariance is large and positive, it is an indication that the random variables
are strongly correlated. When it is large and negative, they are strongly anti-
correlated. Zero covariance means the variables are uncorrelated. In fact,
correlation is defined as correlation

This is essentially the covariance “normalized” to the interval [−1, 1].

04.14.2.1 Sample covariance

As with the other statistics we’ve considered, covariance can be estimated
from measurement. The estimate, called the sample covariance qXY , of sample covariance
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random variables X and Y with sample size N is given by

04.14.2.2 Multivariate covariance

With n random variables Xi, one can compute the covariance of each pair.
It is common practice to define an n × n matrix of covariances called the
covariance matrix Σ such that each pair’s covariancecovariance matrix

cov(Xi, Xj) (04.23)

appears in its row-column combination (making it symmetric), as
shown below.

The multivariate sample covariance matrix Q is the same as above, butsample covariance
matrix with sample covariances qXiXj .

Both covariance matrices have correlation analogs.

04.14.2.3 Example: car data

Let’s use a built-in multivariate data set that describes different features of
cars, listed below.

d = load('carsmall.mat') % this is a "struct"

d =

Model: [100x33 char]
Origin: [100x7 char]

MPG: [100x1 double]
Cylinders: [100x1 double]
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Displacement: [100x1 double]
Horsepower: [100x1 double]

Weight: [100x1 double]
Acceleration: [100x1 double]

Model_Year: [100x1 double]
Mfg: [100x13 char]

Let’s compute the sample covariance and correlation matrices.

variables = {...
'MPG','Cylinders',...
'Displacement','Horsepower',...
'Weight','Acceleration',...
'Model_Year'};

n = length(variables);
m = length(d.MPG);

data = NaN*ones(m,n); % preallocate
for i = 1:n

data(:,i) = d.(variables{i});
end

cov_d = nancov(data); % sample covariance
cor_d = corrcov(cov_d) % sample correlation

cor_d =

1.0000 -0.8367 -0.8048 -0.8028 -0.8591 0.4631 0.7112
-0.8367 1.0000 0.9486 0.8588 0.8886 -0.6052 -0.5844
-0.8048 0.9486 1.0000 0.9102 0.8860 -0.6719 -0.5557
-0.8028 0.8588 0.9102 1.0000 0.8656 -0.6836 -0.5843
-0.8591 0.8886 0.8860 0.8656 1.0000 -0.4642 -0.4673
0.4631 -0.6052 -0.6719 -0.6836 -0.4642 1.0000 0.4404
0.7112 -0.5844 -0.5557 -0.5843 -0.4673 0.4404 1.0000

This is highly correlated/anticorrelated data! Let’s plot each variable
versus each other variable to see the correlations of each. We use a red-to-
blue colormap to contrast anticorrelation and correlation. Purple, then, is
uncorrelated.

The following builds the red-to-blue colormap.

n_colors = 10;
cmap_rb = NaN*ones(n_colors,3);
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for i = 1:n_colors
a = i/n_colors;
cmap_rb(i,:) = (1-a)*[1,0,0]+a*[0,0,1];

end

h = figure;
for i = 1:n

for j = 1:n
subplot(n,n,sub2ind([n,n],j,i))
p = plot(d.(variables{i}),d.(variables{j}),'.'); hold on
this_color = cmap_rb(round((cor_d(i,j)+1)*(n_colors-1)/2),:);
p.MarkerFaceColor = this_color;
p.MarkerEdgeColor = this_color;

end
end
hgsave(h,'figures/temp');

04.14.3 Conditional probability and dependence

Independent variables are uncorrelated. However, uncorrelated variables may or
may not be independent. Therefore, we cannot use correlation alone as a test
for independence. For instance, for random variables X and Y, where X
has some even distribution and Y = X2, clearly the variables are dependent.
However, the are also uncorrelated (due to symmetry).

Using a uniform distribution U(−1, 1), let’s show this with some sam-
pling. We compute the correlation for different sample sizes.

N_a = round(linspace(10,500,100));
qc_a = NaN*ones(size(N_a));
rng(6)
x_a = -1 + 2.*rand(max(N_a),1);
y_a = x_a.^2;
for i = 1:length(N_a)

% should write incremental algorithm
% but lazy
q = cov(x_a(1:N_a(i)),y_a(1:N_a(i)));
qc = corrcov(q);
qc_a(i) = qc(2,1); % "cross" correlation

end
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Figure 04.21: car data correlation.
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Figure 04.22: absolute value of the sample correlation between X ∼ U(−1, 1) and Y = X2 for
different sample size N. In the limit, the population correlation should approach zero and
yet X and Y are not independent.

The absolute values of the correlations are shown in Figure 04.22. Note
that we should probably average several such curves to estimate how the
correlation would drop off with N, but the single curve describes our
understanding that the correlation, in fact, approaches zero in the large-
sample limit.
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Lecture 04.15 Regression

Suppose we have a sample with two measurands: (1) the force F through a
spring and (2) its displacement X (not from equilibrium). We would like
to determine an analytic function that relates the variables, perhaps for
prediction of the force given another displacement.

There is some variation in the measurement. Let’s say the following is
the sample.

X_a = 1e-3*[10,21,30,41,49,50,61,71,80,92,100]'; % m
F_a = [50.1,50.4,53.2,55.9,57.2,59.9,61.0,63.9,67.0,67.9,70.3]'; % N

Let’s take a look at the data. The result is Figure 04.23.

h = figure;
p = plot(X_a*1e3,F_a,'.b','MarkerSize',15);
xlabel('$X$ (mm)','interpreter','latex')
ylabel('$F$ (N)','interpreter','latex')
xlim([0,max(X_a*1e3)])
grid on
hgsave(h,'figures/temp');

How might we find an analytic function that agrees with the data?
Broadly, our strategy will be to assume a general form of a function and
use the data to set the parameters in the function such that the difference
between the data and the function is minimal.

Let y be the analytic function that we would like to fit to the data. Let yi
denote the value of y(xi), where xi is the ith value of the random variable
X from the sample. Then we want to minimize the differences between the
force measurements Fi and yi.

From calculus, recall that we can minimize a function by differentiating
it and solving for the zero-crossings (which correspond to local maxima or
minima).

First, we need such a function to minimize. Perhaps the simplest, effec-
tive functionD is constructed by squaring and summing the differences we
want to minimize, for sample size N:
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(recall that yi = y(xi), which makes D a function of x).
Now the form of y must be chosen. We consider only mth-order

polynomial functions y, but others can be used in a similar manner:

y(x) = a0 + a1x+ a2x
2 + · · ·+ amxm. (04.24)

If we treat D as a function of the polynomial coefficients aj, i.e.

D(a0, a1, · · · , am), (04.25)

and minimize D for each value of xi, we must take the partial deriva-
tives of D with respect to each aj and set each equal to zero:

This gives us N equations and m + 1 unknowns aj. Writing the system
in matrix form,
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Figure 04.23: force-displacement data.
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1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
1 x3 x23 · · · xm3
...

...
...

. . .
...

1 xN x2N · · · xmN


︸ ︷︷ ︸

AN×(m+1)


a0
a1
a2
...
am


︸ ︷︷ ︸
a(m+1)×1

=


y0
y1
y2
...
ym


︸ ︷︷ ︸
b(m+1)×1

. (04.26)

Typically N > m and this is an overdetermined system. Therefore, we
usually can’t solve by taking A−1 because A doesn’t have an inverse!

Instead, we either find the Moore-Penrose pseudo-inverse A† and have
a = A†b as the solution, which is inefficient—or we can approximate b with
an algorithm such as that used by Matlab’s \ operator. In the latter case,
a_a = A\b_a.

Let’s use Matlab’s \ operator to find a good fit for the sample. Now,
there’s the sometimes-difficult question “what order should we fit?” Let’s
try out several and see what the squared-differences function D gives.

N = length(X_a); % sample size
m_a = 2:N; % all the order up to N

A = NaN*ones(length(m_a),max(m_a),N);
for k = 1:length(m_a) % each order

for j = 1:N % each measurement
for i = 1:( m_a(k) + 1 ) % each coef

A(k,j,i) = X_a(j)^(i-1);
end

end
end
disp(squeeze(A(2,:,1:5)))

1.0000 0.0100 0.0001 0.0000 NaN
1.0000 0.0210 0.0004 0.0000 NaN
1.0000 0.0300 0.0009 0.0000 NaN
1.0000 0.0410 0.0017 0.0001 NaN
1.0000 0.0490 0.0024 0.0001 NaN
1.0000 0.0500 0.0025 0.0001 NaN
1.0000 0.0610 0.0037 0.0002 NaN
1.0000 0.0710 0.0050 0.0004 NaN
1.0000 0.0800 0.0064 0.0005 NaN
1.0000 0.0920 0.0085 0.0008 NaN
1.0000 0.1000 0.0100 0.0010 NaN
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Figure 04.24: force-displacement data with curve fits.

We’ve printed the first five columns of the third-order matrix, which
only has four columns, so NaNs fill in the rest.

Now we can use the \ operator to solve for the coefficients.

a = NaN*ones(length(m_a),max(m_a));

warning('off','all')
for i = 1:length(m_a)

A_now = squeeze(A(i,:,1:m_a(i)));
a(i,1:m_a(i)) = (A_now(:,1:m_a(i))\F_a)';

end
warning('on','all')

n_plot = 100;
x_plot = linspace(min(X_a),max(X_a),n_plot);
y = NaN*ones(n_plot,length(m_a)); % preallocate
for i = 1:length(m_a)

y(:,i) = polyval(fliplr(a(i,1:m_a(i))),x_plot);
end
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Uncertainty analysis

In this chapter, we explore different ways to quantify uncertainty, begin-
ning with a design-stage uncertainty analysis at which point we estimate un- design-stage

uncertainty
analysis

certainty based on minimal information with little or no data and working
up to a rigorous uncertainty analysis at which we estimate uncertainty from

rigorous
uncertainty
analysis

the information used before and include that of multiple measurements.
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Lecture 05.01 Design-stage uncertainty analysis

Design stage uncertainty analysis is the type of analysis done when
designing a measurement system, before actual measurements are made,
to predict the uncertainty in measurements made by the system being
designed. It comes from different sources in a measurement system which
will now be considered. Often, at this stage, we do not classify each
uncertainty as systematic or random.Zero-order

uncertainty Zero-order uncertainty u0 is uncertainty due to instrument resolution,
which is “arbitrarily” considered to be

Some instruments have error estimates in their manuals; this is called
instrument uncertainty uc. Occasionally, this is given as a single value, butinstrument

uncertainty more often several contributing elemental errors are given, such as linearity
elemental error error (due to nonlinearities) and hysteresis error (due to a lack of symmetry

in a measurement’s increase versus its decrease).
The root-sum-squares (RSS) method allows us to estimate the total instru-root-sum-squares

(RSS) method ment uncertainty uc due to the elemental uncertainties uk (with number of
elements K) as

The RSS method can be used to combine design-state uncertainties of
concatenated (series) instruments for a measurement, as well (e.g. a force
measurement with a force-to-voltage transducer and a multimeter).

The confidence/probability level P% depends on the confidence of each
error estimate (ideally, they all have the same confidence). If none is given,
it is common to use 95%.

The design-stage uncertainty ud for an instrument is defined asdesign-stage
uncertainty

ud =
√
u20 + u

2
c (P%). (05.1)

This is an estimate of our uncertainty based solely on information about
the instruments. This should be considered an estimate of our minimum
uncertainty. Factors we will later consider will add uncertainty.
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Example 05.01-1 force measurement with a load cell and a digital
voltage measurement

Estimate the design-stage uncertainty for the measurement of a
force with a load cell (including amplifier) that transduces force to
voltage and a digital voltage measurement via an analog input of
a microcontroller. The following tables include specifications from
each instrument’s manual.

load cell
range [0, 60] N
sensitivity 0.1 V/N
linearity error 0.15 mV/N
sensitivity error 0.25 mV/N

µC AI
range [0, 5] V
ADC resolution 12 bits
absolute accuracy 50 mV
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Lecture 05.02 Functional propagation of uncertainty

Often, we use a measurement to estimate a quantity that is functionally
dependent on the measurand. For instance, perhaps we would like to
estimate the volume V of an object that—would you look at that—happens
to be cubic with side length `, so its volume could be reasonably estimated
to be V(`) = `3. Your measurement of ` has some associated uncertainty u`,
certainly. How does that propagate to an uncertainty uV in V?

Recall that uncertainty is half of a symmetric interval centered at the
best estimate of the value. When you drop an interval symmetric about
some value x̃ into a nonlinear function f, that interval comes out (usually)
asymmetric about x̃. asymmetry

Let’s demonstrate this with our cubic volume. Let the 95% uncertainty
in ` be u`, such that there is a 95% probability that a volume measurement
value

Now, run that interval `± u` through the volume function V :

. . . this isn’t symmetric about the mean V(`) so we linearize . . . which
is what we also do for a multivariate function, too, and multiply each
independent variable’s partial derivative slope (evaluated at the mean) by
the uncertainty of that variable’s measurement. Then combine with RSS.
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Lecture 05.03 Rigorous uncertainty analysis

We have learned about confidence from a statistical point-of-view. Based onconfidence

sample variability, we might have P% confidence in a given measurement.
As we have learned, an estimate of the variability of the random variable
X—in this case, the measurand—is given by its sample standard deviationsample standard

deviation SX. In the case of multiple samples, its best estimate was the sample mean
sample mean of

standard
deviations

of standard deviations SX. The best estimate of the value of X (that is, it’s
mean µX) was the sample mean X. In the case of multiple samples, it was the

sample mean sample mean of sample means X. Finally, the best estimate of the variability
of the mean was the sample standard deviation of sample means SX. Furthersample standard

deviation of sample
means

recall the nice estimate of SX from a single sample with size N:

As we can see, as sample size N increases, SX decreases. This type
of error in a measurement is called random error and gives rise to randomrandom error

random uncertainty uncertainty ur, related to what we have called confidence intervals about the
confidence

intervals
best estimate of the mean, such as, for a single sample of size N,

x ∈ X± tν,PSX (P%) (05.2)

where ν = N−1 is the degree of freedom and P% is our confidence based on
the probability P% of a Student random variable X taking a value x within
tν,P standard deviations of the mean. The random uncertainty is a half-
interval

ur = tν,Ps (P%) (05.3)

where s = SX (68%) is the standard random uncertainty, which is simply onestandard random
uncertainty standard deviation of the means.

However, error can arise from more than randomness. Other sources
arise that bias the measured values—say, up or down—from the mean. Thisbias

is called systematic error and generates systematic uncertainty ub (becausesystematic error
systematic
uncertainty

bias) and systematic standard uncertainty b that has 68% confidence. Let

systematic
standard

uncertainty

a measurement instrument’s manual list an elemental error B, which
(unless otherwise stated in the manual) is assigned a 95% confidence; the
systematic standard uncertainty is b = B/2. Assuming a large sample was
used to estimate B, we might report an uncertainty associated with that
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error to be ub = 2b with 95% confidence (we are assuming a Gaussian
distribution, but the distribution shape has little effect).

Let’s consider systematic error a bit more, through an example. A scale
might be systematically reading high (I know my scale does, especially
around the holidays). This can be identified and mitigated by calibration calibration

to a standard. The National Institute of Standards and Technology (NIST)
calibrates weights. Let’s say you have a 10 kg NIST calibrated weight
(such an object is called a standard) with one-normal-standard deviation standard

confidence ±200 ·10−9 kg. Let’s say I weigh itN = 10 times on my scale and
the sample mean x = 10.5 kg and sample standard deviation Sx = 0.3 kg.
The calibration allows me to adjust the bias on my scale by 10− 10.5 = −0.5

kg.

However, there remain two systematic uncertainties associated with my
scale’s bias: (1) NIST’s standard uncertainty bstd = 200 · 10−9 kg due to
NIST’s measurement of the standard 10 kg weight and (2) our calibration
standard uncertainty

The systematic standard uncertainties are combined in the usual RSS way
(although the calibration uncertainty clearly dominates):

A measurement sample of sizeM = 23 of an object with unknown mass
m is then performed with the calibrated scale. The sample mean ism = 9.04

kg and sample standard deviation Sm = 1 kg. How confident can we be
in the result? Certainly both the systematic and random certainties must
contribute. Before we can consider their combined effect, let’s compute the
standard random uncertainty:
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We combine the systematic and random uncertainties in the usual RSS
way:

Since these are standard uncertainties, we must find its effective degree of
freedom ν before assigning it a confidence with a Student t-score. How
can we estimate this from these different sources of uncertainty, each with
their own degree of freedom? A method of estimating the effective degree
of freedom is given by (Figliola and Beasley, 2015) and is presented in
an equivalent form here. Let a measurement have J random standard
uncertainties sj with corresponding degrees of freedom νsj ; further, let it
have K systematic standard uncertainties bk with corresponding degrees of
freedom νbk ; then the effective degree of freedom is

ν =

 J∑
j=1

s2j +

K∑
k=1

b2k

2
J∑
j=1

s4j /νsj +

K∑
k=1

b4k/νbk

. (05.4)

From above, we have J = 1 and K = 2 and standard uncertainties given
in Table 05.1. This gives ν = 29.0. That’s close enough to 30 to call it “large”
and assign a 95% confidence uncertainty

So, using our 95% confidence uncertainty for our interval, our best estimate
for the mass is
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Table 05.1: summary of standard uncertainties for a fictional mass measure-
ments.

uncertainty value s or b deg. of freedom
s 0.209 kg 22

bstd 200 · 10−9 kg ∞
bcal 0.0949 kg 9

05.03.1 An extensive example

Consider a temperature measurement made with a linear calibrated
temperature-voltage transducer. The calibration data is given as t_cal
(units C) and v_cal (units V). The measurement voltage sample is given
as a time series v_a (units V) versus time_a (units s), where we can
assume relatively constant measurement conditions and a stationary
process.

The voltmeter (used for calibration and for data) and the thermometer
(used for calibration) have the systematic uncertainties defined below.

bv_1 = .1; % V ... voltmeter absolute uncertainty
bv_2 = .05; % V ... voltmeter linearity uncertainty
bt_1 = .05; % C ... thermometer absolute uncertainty

05.03.1.1 Calibration curve and its uncertainty

Let’s first consider the calibration data.

disp('sample data (time,voltage)')
disp([time_a;v_a]')

sample data (time,voltage)
0 5.7959

1.8182 5.5286
3.6364 5.2110
5.4545 5.4191
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7.2727 5.6164
9.0909 5.6746

10.9091 5.4349
12.7273 5.8535
14.5455 5.6782
16.3636 5.7058
18.1818 5.5820
20.0000 6.3077

Let’s perform a linear regression analysis on the calibration data to find
a calibration curve. The standard uncertainty of a polynomial regression of
orderm−1 and data with values ỹi approximating calibration curve values
yi with sample size N is (Figliola and Beasley, 2015, Equation 4.35)

sfit =

√√√√√√
N∑
i=1

(ỹi − yi)
2

ν
(05.5)

where the degree of freedom ν = N− (m+ 1). For a linear fit, m = 2.

pf_cal = polyfit(v_cal,t_cal,1)
k_trans = pf_cal(1); % this is the transducer gain
p_cal = polyval(pf_cal,v_cal);
d_cal = p_cal - t_cal;
nu_cal = length(d_cal)-(2+1)
s_cal = sqrt((sum(d_cal.^2))/nu_cal)

pf_cal =
4.9994 -0.2028

nu_cal =
22

s_cal =
0.4712

h = figure;
p = plot(v_cal,t_cal,'x'); hold on
p2 = plot(v_cal,p_cal,'r-');
grid on;
xlabel('voltage (V)')
ylabel('temperature (C)')
hgsave(h,'figures/temp');
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05.03.1.2 Random uncertainty

Another source of random error is the finite sample size. It can be
computed, in the usual way, as the sample standard deviation of the sample
means. And first, of course, the sample v_a must be passed through the
calibration curve pf_cal.

t_a = polyval(pf_cal,v_a);
mu_t = mean(t_a)
s_mu_t = std(t_a)/length(t_a)
nu_a = length(t_a)-1

mu_t =
28.0473

s_mu_t =
0.1132

nu_a =
11

The total random uncertainty is the root-sum-square (RSS) combination
of the calibration and finite sample size uncertainties.
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Figure 05.1: voltage-temperature transducer calibration data with its linear fit.
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s = sqrt(s_cal^2+s_mu_t^2)

s =
0.4846

05.03.1.3 Systematic uncertainty

The total systematic uncertainty is an RSS combination of those system-
atic uncertainties described in the problem statement. The transducer gain,
found from the calibration curve, can be used to convert voltage uncertain-
ties to temperature uncertainties.

b = sqrt(2*(k_trans*bv_1)^2+2*(k_trans*bv_2)^2+bt_1^2)

b =
0.7921

Note the factors of two. These are due to the voltmeter’s use in the
calibration and in the sample.

05.03.1.4 Total uncertainty

The total standard uncertainty is the RSS combination of the standard
random and systematic uncertainties.

u_t = sqrt(s^2+b^2)

u_t =
0.9286

In order to assign a confidence interval via a t-score, we can use
Equation 05.4 to compute the effective degree of freedom of the standard
uncertainty. Given no information to the contrary, we assume the degree of
freedom for each systematic uncertainty is high.

nu_t = (u_t^2)^2/(s_cal^4/nu_cal+s_mu_t^4/nu_a)

nu_t =
329.5059

160 3 September 2018, 17:29:26 05.03 3 7



Chapter 05 Uncertainty analysis Lecture 05.03 Rigorous uncertainty analysis

This is much greater than 30, so we can assume the distribution is
Gaussian and use a z-score. Let’s assign a 95% confidence uncertainty.

u_t_95 = 2*u_t

u_t_95 =
1.8571

So a confidence interval for the estimate of the temperature is as follows.

mu_t_int = mu_t + [-1,1]*u_t_95

This is the result of our full uncertainty analysis.
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Lecture 06.01 Instrumentation for electricity measure-
ment

At a high level, let’s survey the measurement of electricity. We begin with
electricity because nearly every modern measurement device has an elec-
tronic stage, so electronic measurement is fundamental for measuring most
quantities. Although many modern measurement devices are digital—that
is, sampled—we first consider analog measurement techniques, the prin-
ciples of which still apply to digital measurement, and which are still in
practical use in some cases.

Figure 06.1: a Fluke multimeter
from the SMU Robotics lab.

The fundamental quantities to be measured
are current, voltage, and resistance. Quick,
one-off measurements of these quantities can
be performed with a handheld multimeter,multimeter

which can be either analog or digital. A multi-
meter has different modes for measuring a cur-
rent, voltage, or resistance. To measure volt-
age or resistance between two nodes in a cir-
cuit, the multimeter’s two probes are simulta-
neously contacted with them. To measure the
current through a circuit element, the multime-
ter itself must be placed in the circuit such that
current flows through it. In the former case,
it is best for the multimeter to have high input
resistance such that it draws as little as possi-
ble current through itself (and thereby affect-
ing the measurement). In the latter case of cur-
rent measurement, it is preferable for the mul-
timeter to have low input resistance such that it
drops the voltage across itself as little as possi-
ble (and thereby affecting the measurement).

Precision, (typically) benchtop multimeters
are available that can reduce the uncertainty in
one-off measurements.

Specific aspects of an AC electronic signal can be measured with a multi-
meter; most commonly, just the root-mean-square (RMS) voltage or current
can be measured. However, these measurements have significant limita-
tions, including their effective frequency bandwidth, (typical) inability to
indicate the signal frequency, and lack of information about the signal’s
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Figure 06.2: a Tektronix oscilloscope from the SMU Robotics lab.

noise. The multimeter’s wheelhouse is the DC signal and the standard 60
Hz AC power transmission signal.

Time-varying analog and digital voltage signals—including, DC, AC,
and, to some extent, “other”—can be viewed effectively on an oscilloscope oscilloscope

(or “scope”), a photo of which is shown in Figure 06.2 . These devices ef-
fectively show a trace of a signal across a time-window. If the window is
properly “triggered,” such that the window starts at the same point in a
periodic signal, it will trace approximately the same path across the win-
dow. This gives the illusion of “zooming in” in time and viewing the signal
across a viewing window of, say a couple milliseconds. Oscilloscopes are
mostly practical for debugging and one-off measurements. But they are
super fun.

For repeated, continuous, stored measurements of signals—DC, AC,
and “other”—it is now standard practice to use a digital data acquisition de- digital data

acquisitionvice that includes analog-to-digital conversion (ADC). A plethora of microcon-
analog-to-digital
conversion
microcontrollers

trollers (µCs) are now available for such measurements, ranging from inex-
pensive and inaccurate to accurate and expensive, as usual. Dedicated data
acquisition boards can be very expensive (six figures), but highly flexible
and accurate.

It is notable that most data acquisition boards have analog inputs
configured to measure voltage only. Therefore, if one wishes to measure
current or resistance, a separate sensor is required. The crudest current sensor

sensor is simply a resistor with a known resistance placed in series with the
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element through which one would like to measure the current. Measuring
the voltage across it and hitting the result with your autOhmatic reveals the
current.

This resistor-as-current-sensor has two distinct disadvantages: (1) like
with the multimeter, one must “break” the circuit in order to flow current
through the resistor/sensor and (2) the resistor’s inclusion in the circuit will
affect it by (assuming its not fighting a controlled current source) reducing
the current flow and dropping the voltage. Much better current sensors
exist, such as the Hall effect sensor. This is typically an integrated circuitHall effect sensor

(microchip) with a current pass-through that sees less than a mΩ of resis-
tance! It outputs an analog voltage approximately linearly proportional to
the current, ready for a data acquisition board analog input. Other current
sensors exist that can be clamped around a wire to measure the current
through it.

There are several ways to measure resistance with a data acquisition
board. Probably the easiest way is to put the unknown resistance in a
voltage-divider with a known resistance and backing-out the unknown
resistance value from the known input and output voltages and the
known resistance. Another is to measure the voltage across and the
current through (using, say, a Hall effect sensor) the unknown resistance,
then letting the Ohm-g regulate. However, a much better way—with a
Wheatstone bridge circuit—is described in detail in Lecture 06.02.Wheatstone bridge

circuit There are also these special devices, typically benchtop and expensive,
that are like the alter-ego of oscilloscopes: spectrum analyzers. These showspectrum analyzers

“real-time” (quickly-updating) fast (discrete) Fourier transforms of signals
on a screen. More band-limited spectrum analyzing functionality has
relatively recently become available in higher-end oscilloscopes. I think
it’s reasonable to assume this label coinage will stick: spectroscilloscopes.1spectroscilloscopes

Ohmg.

1I googled it 5 December 2017 and there were no results. Watch it grow.
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Lecture 06.02 Measuring resistance well

Many sensors are resistive, meaning the physical quantity to which they resistive sensors

are sensitive affect the electrical resistance of the sensor, the accurate
measurement of which is necessary for an accurate measurement of the
physical quantity. In Lecture 06.01, we learned that we can measure
unknown resistance Ru by applying a known voltage to it Vs, measuring
the current iRu through it, and using Ohm’s law:

Furthermore, we learned an alternative is to place the unknown resistor in
a voltage-divider circuit with a known resistor Rk, apply a known voltage
Vs, measure the output voltage vRk , and use the voltage-divider equation

to solve for the unknown resistance

The sensitivity of these methods to measured quantities iRu and vRk are:

For small iRu or vRk , which correspond to large Ru, these are very sensitive.
This means a small uncertainty in our measurements would propagate with
large (and therefore unwanted) multiplicative factors.

We now explore the Wheatstone bridge circuit for measuring an unknown Wheatstone bridge
circuitresistance.
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06.02.1 Wheatstone bridge circuit

+
−Vs

R 1

R
2

R
3

Ru

+ −vo

Figure 06.3: a Wheatstone bridge circuit.

A Wheatstone bridge circuit for
measuring unknown resistance Ru
from measured (known) Vs, vo, R1,
R2, and R3 is shown in Figure 06.3.
We would first like to derive the re-
lationship between Vs and vo. The
first observation we make is that
the two “arms” of the bridge, R1–
R2 and R3–Ru, are each just voltage
dividers of Vs. That is,

By Kirchhoff’s voltage law, vo = vR2 − vRu . These yield the desired
relationship

vo =

(
R2

R1 + R2
−

Ru

R3 + Ru

)
Vs. (06.2)

Solving this for the unknown resistance, we obtain

Ru =
R3(R2Vs − (R1 + R2)vo)

R1Vs + (R1 + R2)vo
. (06.3)

It is typical common to have all resistors nearly equal to a single resistance
R. Under this condition, the sensitivities of the measurement can be found
to be

∂Ru

∂vo
= −

4RVs

(Vs + 2vo)2
,

∂Ru

∂Vs
=

4RVs

(Vs + 2vo)2
, and

∂Ru

∂R
=
Vs − 2vo
Vs + 2vo

.

In all these expressions, we can control our sensitivity with the input
voltage Vs.
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06.02.2 Null method

The bridge is said to be balanced when Vs 6= 0 and vo = 0. That is, when balanced bridge

From Equation 06.3, vo = 0 greatly simplifies the expression for the
unknown resistance

This is completely independent of Vs. Of course, if Ru is a resistive sensor,
and its resistance changes such that the bridge is no longer balanced, the
bridge must be re-balanced via changing another resistance some known
amount. Often, R2 is a potentiometer (variable resistor) that can be adjusted potentiometer

to balance the bridge. Sometimes feedback control is used to maintain a
balanced bridge.

This is called the null method because it requires a balanced bridge (zero null method

output voltage). It is difficult to measure a signal that is time-varying
(unless it is slow) with this method, due to the required constant balancing
of the bridge.

06.02.3 Deflection method

The deflection method simply lets the bridge become unbalanced, logs the deflection method

data, and applies Equation 06.3 to compute Ru. This is preferred for
time-varying measurements, since it doesn’t require a much faster bridge-
balancing process. It does require that Vs is measured, which can, in
some instances, lend a slight advantage to the null method in the case of
stationary measurements.
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Lecture A.01 Quadratic forms

The solution to equations of the form ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
. (A.1)

A.01.1 Completing the square

This is accomplished by re-writing the quadratic formula in the form of the
left-hand-side (LHS) of this equality, which describes factorization

x2 + 2xh+ h2 = (x+ h)2. (A.2)
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Lecture A.02 Trigonometry

A.02.1 Triangle identities

With reference to the below figure, the law of sines is

sin α
a

=
sin β
b

=
sin γ
c

(A.3)

and the law of cosines is

c2 = a2 + b2 − 2ab cos γ (A.4a)

b2 = a2 + c2 − 2ac cos β (A.4b)

a2 = c2 + b2 − 2cb cos α (A.4c)

b

c
a

α γ

β

A.02.2 Reciprocal identities

cscu =
1

sinu
(A.5a)

secu =
1

cosu
(A.5b)

cotu =
1

tanu
(A.5c)

A.02.3 Pythagorean identities

1 = sin2 u+ cos2 u (A.6a)

sec2 u = 1+ tan2 u (A.6b)

csc2 u = 1+ cot2 u (A.6c)
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A.02.4 Co-function identities

sin
(π
2
− u

)
= cosu (A.7a)

cos
(π
2
− u

)
= sinu (A.7b)

tan
(π
2
− u

)
= cotu (A.7c)

csc
(π
2
− u

)
= secu (A.7d)

sec
(π
2
− u

)
= cscu (A.7e)

cot
(π
2
− u

)
= tanu (A.7f)

A.02.5 Even-odd identities

sin(−u) = − sinu (A.8a)
cos(−u) = cosu (A.8b)
tan(−u) = − tanu (A.8c)

A.02.6 Sum-difference formulas (AM or lock-in)

sin(u± v) = sinu cos v± cosu sin v (A.9a)
cos(u± v) = cosu cos v∓ sinu sin v (A.9b)

tan(u± v) = tanu± tan v
1∓ tanu tan v

(A.9c)

A.02.7 Double angle formulas

sin(2u) = 2 sinu cosu (A.10a)

cos(2u) = cos2 u− sin2 u (A.10b)

= 2 cos2 u− 1 (A.10c)

= 1− 2 sin2 u (A.10d)

tan(2u) =
2 tanu

1− tan2 u
(A.10e)
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A.02.8 Power-reducing or half-angle formulas

sin2 u =
1− cos(2u)

2
(A.11a)

cos2 u =
1+ cos(2u)

2
(A.11b)

tan2 u =
1− cos(2u)
1+ cos(2u)

(A.11c)

A.02.9 Sum-to-product formulas

sinu+ sin v = 2 sin
u+ v

2
cos

u− v

2
(A.12a)

sinu− sin v = 2 cos
u+ v

2
sin

u− v

2
(A.12b)

cosu+ cos v = 2 cos
u+ v

2
cos

u− v

2
(A.12c)

cosu− cos v = −2 sin
u+ v

2
sin

u− v

2
(A.12d)

A.02.10 Product-to-sum formulas

sinu sin v =
1

2
[cos(u− v) − cos(u+ v)] (A.13a)

cosu cos v =
1

2
[cos(u− v) + cos(u+ v)] (A.13b)

sinu cos v =
1

2
[sin(u+ v) + sin(u− v)] (A.13c)

cosu sin v =
1

2
[sin(u+ v) − sin(u− v)] (A.13d)

A.02.11 Two-to-one formulas

A sinu+ B cosu = C sin(u+ φ) (A.14a)
= C cos(u+ψ) where (A.14b)

C =
√
A2 + B2 (A.14c)

φ = arctan
B

A
(A.14d)

ψ = − arctan
A

B
(A.14e)
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Lecture B.01 Gaussian distribution table

Below are plots of the Gaussian probability density function (PDF) f and
cumulative distribution function (CDF) Φ. Below them is Table B.1 of CDF
values.
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Table B.1: z-score table (columns are hundredths), Φ(zb) = P(z ∈ (−∞, zb]).
zb . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
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Table B.1: z-score table (columns are hundredths), Φ(zb) = P(z ∈ (−∞, zb]).
zb . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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