Lecture 04.02 Introduction to set theory

set theory

Set theory is a very useful branch of mathematics for engineers. In probability theory, we use the language of set theory. For this reason, we review basic set theory.

A *set* is a collection of objects. Set theory gives us a way to describe **set** these collections. Often, the objects in a set are numbers or sets of numbers. However, a set could represent collections of zebras and trees and hairballs. For instance, here are some sets:

A *field* is a set with special structure. This structure is provided by the *addition* (+) and *multiplication* (×) operators and their inverses *subtraction* (–) and *division* (\div). The quintessential example of a field is the set of *real numbers* \mathbb{R} , which admits these operators, making it a field. The reals \mathbb{R} , the complex numbers \mathbb{C} , the integers \mathbb{Z} , and the natural numbers² \mathbb{N} are the fields we typically consider.

field addition multiplication subtraction division real numbers set membership

set operations

Set membership is the belonging of an object to a set. It is denoted with the symbol \in , which can be read "is an element of," for element x and set X:

For instance, we might say $7 \in \{1,7,2\}$ or $4 \notin \{1,7,2\}$. Or, we might declare that a is a real number by stating: $x \in \mathbb{R}$.

Set operations can be used to construct new sets from established sets. We consider a few common set operations, now.

The *union* \cup of sets is the set containing all the elements of the original **union** sets (no repetition allowed). The union of sets A and B is denoted $A \cup B$. For instance, let $A = \{1, 2, 3\}$ and $B = \{-1, 3\}$; then

The *intersection* \cap of sets is a set containing the elements common to all *intersection* the original sets. The intersection of sets A and B is denoted A \cap B. For instance, let A = {1, 2, 3} and B = {2, 3, 4}; then

²When the natural numbers include zero, we write \mathbb{N}_0 .

empty set set difference	If two sets have no elements in common, the intersection is the <i>empty set</i> $\emptyset = \{\}$, the unique set with no elements. The <i>set difference</i> of two sets A and B is the set of elements in A that aren't also in B. It is denoted $A \setminus B$. For instance, let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$. Then
subset proper subset	A <i>subset</i> \subseteq of a set is a set, the elements of which are contained in the original set. If the two sets are equal, one is still considered a subset of the other. We call a subset that is not equal to the other set a <i>proper subset</i> \subset . For instance, let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Then

complement The *complement* of a subset is a set of elements of the original set that aren't in the subset. For instance, if $B \subseteq A$, then the complement of B, denoted \overline{B} is