
INTERFACE NOTES

Analog Initialization

For our project we will use the analog input channel
CI0 and the analog output channel CO0 on connnector-
C. They communicate with the processor through the
FPGA.

Before they can be used they must be initialized using

AIO_initialize(&CI0, &CO0);

Call it once (in main.c), where CI0 and CO0 are globally allo-

cated structures that must be of type MyRio_Aio. This initial-

ization function is included in the me477Library.

Analog-to-Digital Converter

The single-channel 12-bit analog-to-digital converter
(ADC) measures the current value of the applied voltage
in the range [-10.000, +9.995] V. Voltages outside that
range “saturate” the conversion as shown.

+10 V

Converted
Value

ADC
Input
Voltage-10 V

-10 V

0 V

+10 V

The ADC has a resolution of 4.883 mV, with absolute
accuracy of ±200 mV. Each channel has input impedance
> 500 kΩ. Overload protection: ±16 V.

Our library contains a function that reads a specified
channel of the ADC, and returns the converted value. Its
prototype is:

double Aio_Read(MyRio_Aio* channel);

where channel is the pointer to the channel structure
defined above: &CI0.

Digital-to-Analog Converter

The single-channel 12-bit digital-to-analog converter
(DAC) produces a voltage at the output terminal in the
range [-10.000, +9.995] V. Again, specified voltages out-
side that range “saturate” the conversion as shown. The

+10 V

Converted
Output Value

Specified
DAC
Voltage
Value

-10 V

-10 V

0 V

+10 V

DAC has a resolution of 4.883 mV, with absolute accuracy
of ±200 mV. Each channel has a maximum drive current
of 3 mA, and a maximum slew rate of 2V/µs. Overload
protection: ±16 V.

Our library contains a function that accepts a specified
channel for the DAC, and returns the converted value. Its
prototype is:

void Aio_Write(MyRio_Aio* channel, double value);

where channel is the pointer to the channel structure
defined above: &CO0, and value is the specified value of
the analog output voltage.

1

Interface Notes

Timer IRQ

Initializing the Timer interrupt is similar to initializing
the Digital Input interrupt.

We will use a separate thread to produce interrupts
at periodic intervals. Within main.c we will configure
the Timer interrupt, and create a new thread to respond
when the interrupt occurs. The two threads communicate
through a globally defined thread resource structure:

typedef struct {

NiFpga_IrqContext irqContext; // IRQ context reserved

NiFpga_Bool irqThreadRdy; // IRQ thread ready flag

} ThreadResource;

National Instruments provides C functions to set up the
Timer interrupt request (IRQ).

1) Register the Timer IRQ – The first of these functions
reserves the interrupt from FPGA and configures the
Timer and IRQ. Its prototype is:

int32_t

Irq_RegisterTimerIrq(MyRio_IrqTimer* irqChannel,

NiFpga_IrqContext* irqContext,

uint32_t timeout);

where the five input arguments are:

1. irqChannel- A pointer to a structure containing the registers
and settings for the IRQ I/O to modify; defined in TimerIRQ.h

as:

typedef struct {

uint32_t timerWrite; // Timer IRQ interval register

uint32_t timerSet; // Timer IRQ setting register

Irq_Channel timerChannel; // Timer IRQ supported I/O

} MyRio_IrqTimer;

2. irqContext - a pointer to a context variable identifying the
interrupt to be reserved. It is the first component of the thread
resources structure.

3. timeout - The timeout interval in µs.

the returned value is 0 for success.

2) Create the interrupt thread – A new thread must be
configured to service the Timer interrupt. In main.c we
will use pthread_create() to set up that thread. Its
prototype is:

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

where the four input arguments are:

1. thread - A pointer to a thread identifier.

2. attr - A pointer to thread attributes. In our case, use NULL
to apply the default attributes.

3. start_routine - Name of starting function in the new thread.

4. arg - The sole argument to be passed to the new thread. In our
case, it will be a pointer to the thread resource structure de-
fined above in the second argument of Irq_RegisterDiIrq().

This function also returns 0 for success.

We can combine these ideas into a portion of the main.c
code needed to initialize the timer IRQ. For interrupts
on rising-edge transitions on input-0 of connector-A,
assigned to IRQ 3 we have:

int32_t status;

MyRio_IrqTimer irqTimer0;

ThreadResource irqThread0;

pthread_t thread;

// Specify IRQ channel settings

irqTimer0.timerWrite = IRQTIMERWRITE;

irqTimer0.timerSet = IRQTIMERSETTIME;

timeoutValue = 500;

// Initialize analog interfaces before allowing IRQ

AIO_initialize(&CI0, &CO0); // initialize analog I/O

Aio_Write(&CO0, 0.0); // zero analog output

// Configure Timer IRQ. Terminate if not successful

status = Irq_RegisterTimerIrq(

&irqTimer0,

&irqThread0.irqContext,

timeoutValue);

// Set the indicator to allow the new thread.

irqThread0.irqThreadRdy = NiFpga_True;

// Create new thread to catch the IRQ.

status = pthread_create(

&thread,

NULL,

Timer_Irq_Thread,

&irqThread0);

The IRQ settings symbols associated with the timer
interrupt, are defined in the header file: TimerIRQ.h.

After the functions of main.c are completed, it should
signal the new thread to terminate by setting the
irqThreadRdy flag in the ThreadResource structure, and
waiting for the thread to terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;

pthread_join(thread, NULL);

Finally, the timer interrupt must be unregister with:

status = Irq_UnregisterTimerIrq(

&irqTimer0,

irqThread0.irqContext);

using the same above arguments.

2

Interface Notes

3) The interrupt thread – This is the separate thread that
was named and started by the pthread_create() func-
tion. Its overall task is to perform any necessary function
in response to the interrupt. This thread will run until
signaled to stop by main.c.

The new thread is the starting routine specified in the
pthread_create() function called in main.c. In our
case: void *Timer_Irq_Thread(void* resource).

The first step in Timer_Irq_Thread() is to cast its in-
put argument (passed as void *) into appropriate form.
In our case, we cast the resource argument back to a
ThreadResource structure. For example, declare

ThreadResource* threadResource = (ThreadResource*) resource;

The second step is to enter a while loop. Two functions
are performed each time through the loop:

- while the main thread does not signal this thread to stop {

1. Wait for the occurrence (or timeout) of the IRQ.

- if it has, "schedule" the next interrupt.

2. if the Timer IRQ has been asserted {

- Perform operations to service the interrupt.

- Acknowledge the interrupt.

}

The while loop should continue until the irqThreadRdy

flag (set in main.c) indicates that the thread should end.
For example,

1. Use the Irq_Wait() function to pause the loop while
waiting for the interrupt. For our case the call might
be:

uint32_t irqAssert = 0;

Irq_Wait(threadResource->irqContext,

TIMERIRQNO,

&irqAssert,

(NiFpga_Bool*) &(threadResource->irqThreadRdy));

Notice that it receives the ThreadResource context
and Timer IRQ number information, and returns
the irqThreadRdy flag set in the main.c thread.

Schedule the next interrupt by writing the time inter-
val into the IRQTIMERWRITE register, and setting the
IRQTIMERSETTIME flag. That is,

NiFpga_WriteU32(myrio_session,

IRQTIMERWRITE,

timeoutValue);

NiFpga_WriteBool(myrio_session,

IRQTIMERSETTIME,

NiFpga_True);

The timeoutValue is the number of microseconds
(uint32_t) until the next interrupt.

2. Because the Irq_Wait() times out after 100 ms, we
must check the irqAssert flag to see if the Timer
IRQ has been asserted.

In addition, after the interrupt is serviced, it must
be acknowledged to the scheduler. For example,

if(irqAssert) {

% Your interrupt service code here

Irq_Acknowledge(irqAssert);

}

In the third step (after the end of the loop) we terminate
the new thread, and return from the function:

pthread_exit(NULL);

return NULL;

3

