I. Logic Variables

Logic variables take on only two states. The two states are represented by a (logic one) or a 0 (logic zero), although TRUE and FALSE, ON and OFF, HIGH and LOW, are also names given to the two states. The states are exclusive. That is:

If $A \neq 0$, then $A=1$
If $A \neq 1$, then $A=0$
II. Three Basic Boolean Operations
A. "OR"

Expression:
Meaning:

Truth Table:

$\boldsymbol{F} \quad |$| \boldsymbol{F} | \boldsymbol{B} | |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

$F=A+B \quad$ Read: " F is equal to A or B " F is true (1) if either A or B is true.

Logic Symbol:

B. "AND"

Expression: $\quad F=A \bullet B=A B \quad$ Read: " F is equal to A and B " Meaning: $\quad F$ is true (1) if A and B are true

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
0	0	0
0	0	1
0	1	0
1	1	1

C. "NOT" Expression: $F=\bar{A} \quad$ Read: " F is equal to not A " Meaning: $\quad F$ is true (1) if A is not true.

Truth Table:

F	A
1	0
0	1

Logic Symbol:
$\mathrm{A} \longrightarrow \mathrm{O}$

III. Derived Logic Operations

$F=\overline{A+B} \quad$ Read: " F is equal to A nor B "
Combined OR and NOT operations.
F is true (1) if the quantity $A+B$ is not true.

Logic Symbol:

A

$B \longrightarrow-$
B. "NAND" Expression:
$F=\overline{A B}$
Combined AND and NOT operations. F is true (1) is the quantity $A B$ is not true.

Truth Table:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
1	0	0
1	0	1
1	1	0
0	1	1

Logic Symbol:

IV. Basic Theorems

With the basic logic operations it is possible to deduce a set of basic theorems.

$$
\begin{array}{rlrl}
1+A & =1 & 0 \mathrm{~A} & =0 \\
0+A & =A & 1 \mathrm{~A} & =\mathrm{A} \\
A+A & =A & \mathrm{AA} & =\mathrm{A} \\
A+\bar{A} & =1 & A \bar{A} & =0 \\
\overline{\bar{A}} & =A & \\
A+B & =B+A & A B & =B A \\
A+(B+C) & =(A+B)+C & A(B C) & =(A B) C \\
A(B+C) & =A B+A C & (A+B)(A+C) & =A+B C
\end{array}
$$

V. DeMorgan's Theorem's

$$
\begin{aligned}
\overline{A+B} & =\bar{A} \bar{B} \\
\overline{A B} & =\bar{A}+\bar{B}
\end{aligned}
$$

Once expressions or logic symbol diagrams are written for a logic system, they can be manipulated (simplified) using the above rules.

