SUMMARY OF COMBINATIONAL LOGIC

I. Logic Variables

Logic variables take on only two states. The two states are represented by a 1 (logic one) or a 0 (logic zero), although TRUE and FALSE, ON and OFF, HIGH and LOW, are also names given to the two states. The states are exclusive. That is:

If $A \neq 0$, then A = 1If $A \neq 1$, then A = 0

II. Three Basic Boolean Operations

A. "OR" Expression: F = A + B Read: "*F* is equal to *A* or *B*" Meaning: *F* is true (1) if either *A* or *B* is true.

Truth Table:

Logic Symbol:

F	A	B	
0	0	0	
1	0	1	
1	1	0	
1	1	1	

B. "AND" Expression: $F = A \bullet B = AB$ Read: "*F* is equal to *A* and *B*" *F* is true (1) if *A* and *B* are true

Truth Table:

Logic Symbol:

C.	"NOT"	Expression:	$F = \overline{A}$	Read:	<i>"F</i> is equal to <i>not A"</i>
		Meaning:	F is true (1) if A is <i>not</i> true.		

Truth Table:

Logic Symbol:

A. "NOR"Expression: $F = \overline{A + B}$ Read: "F is equal to A nor B"Meaning:Combined OR and NOT operations.
F is true (1) if the quantity A + B is not true.

Truth Table: Logic Symbol: F A В А 1 0 0 Β -0 0 1 0 1 0 0 1 1 Α.

Truth Table: Logic Symbol: F A В Α. 1 0 0 - F 1 0 1 B -1 1 0 0 1 1 Α_ - F Β –

В

F

- F

IV. Basic Theorems

With the basic logic operations it is possible to deduce a set of basic theorems.

$$1 + A = 1$$

$$0A = 0$$

$$1A = A$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$\overline{A} = A$$

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$A(BC) = (AB)C$$

$$A(B + C) = AB + AC$$

$$(A + B)(A + C) = A + BC$$

V. DeMorgan's Theorem's

$$\overline{A+B} = \overline{A} \quad \overline{B}$$
$$\overline{AB} = \overline{A} + \overline{B}$$

Once expressions or logic symbol diagrams are written for a logic system, they can be manipulated (simplified) using the above rules.