The Table Editor for myRIO
ctable() and update()
V 3.0

The following describes ctable(), a utility program that
displays values that are stored in memory, and allows the
user to change selected values. The values, with appropri-
ate labels, appear on the LCD display. The user enters
values on the keypad.

When ctable() is called, it then runs continually, re-
turning to the calling program only when < is entered.
However, other threads may use and caused to be displayed
the information stored by ctable().

A table “title” is displayed on the first line of the LCD
display. The table can have as many as nine numbered
entries. Three of these entries are always displayed below
the title. The user can scroll the entries up and down using
the UP and DWN keys. Alternately, the user can cause any
entry to become the top entry by entering its number.

For example, a three-entry table, shown with the third
entry scrolled to the top, might look like:

Flow Control Table

3 BTI: ms 3.0
1 Qref: (cc/s) 450.
2 Qact: (cc/s) 453.

The user may alter an entry by scrolling it to the top of the
list, and pressing ENTR. The display prompts for a new
value of the parameter. For the example above, pressing
ENTR would cause the prompt: Enter: BTI: ms to
be displayed. The user could then enter the desired new
value (followed by ENTR), causing the new value to be
placed in memory and displayed.

“Edit” values and “Show” values

Note that there are two kinds of values, called “edit”
values and “show” values. Edit values are those that the
user may change at will. Show values are those that the
user may observe more or less continually. Edit values
are not updated; each edit value is presumed not to have
changed since the last time it was changed (edited) by
the user. Show values may not be edited; each show value
is presumed perhaps to have changed since the last time
the table was updated. (The changes would generally be
made by another thread, which would determine a new
show value and place it in memory; the new value would
then be displayed when the table is updated.) Typically,
edit values are system parameters set by the user, while
show values are computed and change with time.

Calling ctable()
The prototype of ctable() is:

int ctable(char *title, struct table *entries, int nval);

The ctable() function is automatically linked with your
code from the MEA477Library.
In main.c, #include "ctable.h"

When calling ctable(), your program must supply ap-
propriate values for the following arguments:

title is a string array for the table title.
Less than 20 characters.

entries is an array of structures of type table defined as:

struct table {
const char *e_label; // entry label

int e_type; // entry type: O-show; l-edit
double value; // value
}

Each element of the array corresponds to an entry
in the table, and specifies the entry label, type (edit
or show), and value of the entry. A good practice is
to make the length of the labels 12 characters or less.
Again, the total number of edit and show entries must
be no greater than 9.

nval specifies the number of table entries.

Entering < causes ctable() to terminate, returning 0 for
a normal exit.

Calling update()

You must also arrange to update the table display auto-
matically, by means of another utility program, update().
The prototype of update () is:

void update(void);

The update () function is automatically linked with your
code from the ME477Library.

You should arrange to have update() called at regular
intervals by a separate thread. From the main thread,
create a table Update Thread to call update () repeatably
within a loop. Define its own thread resource structure to
pass: 1) an Update Thread ready flag, and 2) the update
period to the thread. Generally, the display should not be
updated more often than two times per second.



The Table Editor

For example,

In this table entitled: Flow Control Table, there are
two edit values that can be changed by the user (qref and
btil), and one show value (qact).

In the main thread, the variables for the table title, and
the table structure array are declared and initialized.

char *Table_Title ="Flow Control Table";
static struct table my_table[] = {
{"Qref: (cc/s)", 1, O. 3},
{"Qact: (cc/s)", 0, 0.0 1},
{"BTI: ms ", 1, 5.0 }
1
Notice that the each element of the array my_table is a struct
of type table containing the entry label, type, and initial value.

>

Finally, the table editor is called.
ctable(Table_Title, my_table, 3);

Within the thread that uses the table values, pointers
corresponding to convenient names of the table variables
can be declared.

double *qref & ((threadResource->a_table+0)->value) ;
double *qact = &((threadResource->a_table+l)->value);
double *bti = &((threadResource->a_table+2)->value);

Variables are referred to by their named pointers. For
example,

T = *bti/1000.;
Note the dereferencing of the bti pointer.



