Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

Lecture 06.03 Running and launching ROS nodes

Let’s fire up some ROS nodes! Technically, we could cd around our
filesystem, find packages, and start nodes with*

python <filename>.py

However, this is highly inconvenient. The rosbash package includes
several utilities to improve this experience. Install it with the following.

sudo apt install rosbash

Reload your shell with exec $SHELL.
First, we might want to list files in an installed ROS package by simply
executing, in any directory, ros1ls as follows. rosls

rosls <package_name>

Second, we might want to change to the directory of an installed ROS
package with, in any directory, roscd as follows. roscd

roscd <package_name>

Third, there’s completion. Terminal itself has completion: in any [tab] completion
directory with a subdirectory named foo, type cd fo<tab>. It's a sort
of autocompletion. ROS itself has this for its commands like roscd. Try
starting to to type roscd rospy_tutorials and hit tab). If there’s more
than one matching package, double-tap to get a list.
There are a couple others that we'll explore in the following sections:
rosrun and roslaunch.

06.03.1 Running ROS nodes

In this section, we’ll start a few nodes, mostly from the rospy_tutorials
package, installed with the following command.

sudo apt install ros-melodic-ros-tutorials

#For the curious, some nodes we’ll be starting in a second could be started by navigating
to /opt/ros/melodic/share/rospy_tutorials/001_talker_listener and exe-
cuting, say, python talker.py.

75 06 June 2020, 18:32:55 06.03>1

rosrun

Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

As usual, after installation, exec $SHELL Before we start any nodes, we
need a roscore service started.

roscore

Now open a fresh terminal. We’ll start our first “real” node with the
rosrun command.

rosrun rospy_tutorials talker

In general, the syntax is as follows.

rosrun <package_name> <program_filename> [args]

So talker.py is run and should start printing something like the follow-
ing every ten milliseconds.

‘[INFO] [1585538656.490473]: hello world 1585538656.49
‘[INFO] [1585538656.591393]: hello world 1585538656.59
‘[INFO] [1585538656.691669]: hello world 1585538656.69

This talker node is publishing hello world <time> on topic
chatter. In a new terminal window, let’s start a node to listen to the topic
chatter: the 1istener node.

rosrun rospy_tutorials listener

This should give us something like the following.

[INFO] [1585542073.580711]: /listener_6552_1585542070720I heard
— hello world 1585542073.58
[INFO] [1585542073.682800]: /listener_6552_1585542070720I heard
— hello world 1585542073.68
[INFO] [1585542073.780337]: /listener_6552_1585542070720I heard
— hello world 1585542073.78

The ROS graph we just built is considered the “hello world” of ROS and
is depicted in Figure 06.4.

chatter :

Figure 06.4: the talker-listener ROS graph with topic chatter.

You can generate similar ROS graph representations with the following,
in a new Terminal.

76 06 June 2020, 18:32:55 06.03 > 2

Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

rgt_graph

When you're satisfied, stop each node with (et [+ c . stop a node

06.03.2 Launching ROS nodes

It is inconvenient to manually rosrun every node for larger (i.e. typical)
ROS graphs. Launch files have extension .launch and are collections launch files
of node information that the command roslaunch operates on. The roslaunch
example talker-listener graph from above has a launch file talker_
listener.launch.

Let’s first find the launch file.

roscd rospy_tutorials/001_talker_listener
1ls

listener 1listener.py README talker talker_listener.launch
— talker.py

Now let’s print its contents.

cat talker_listener.launch

<launch>
<node name="listener" pkg="rospy_tutorials" type="listener.py"
— output="screen"/>
<node name="talker" pkg="rospy_tutorials" type="talker.py"
— output="screen"/>
</launch>

The pkg parameter for each node tag specifies the package from which

the node comes; the type tag, the Python file; the output tag is often

"screen" so that the node outputs to the console (instead of just a log file).

The name tag may at first seem superfluous. However, it is very important:

distinct names can be given to the same node type. For instance, two

listener.py nodes can be launched with distinct names. This is one way

of separating what is called the namespace of a ROS graph. namespace
From any directory, the talker-listener graph can be launched with

the following call to the launch file.

roslaunch rospy_tutorials talker_listener.launch

We should get the same results as our manual (rosrun) method above.

77 06 June 2020, 18:32:55 06.03>3

