
Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

Lecture 08.02 Serving and calling a ROS service

Creating a server node is our first consideration.server node

08.02.1 Creating a server node

Here are some key aspects of a rospy server, listed below as instructions
for creating such a node.

1. Import the service type and its Response function:
from <pkg>.srv import <srv_type> <srv_type>Response.

2. Define a function to serve:
def fun(request).

3. Register a service:
rospy.Service(<srv_name>,<srv_type>,<fun>).

4. Wait for service requests: rospy.spin().

The service function can return:

1. a <srv_type>Response object:
return <srv_type>Response(<value1>,<value2>,...) or

2. a single value (matching a single service output type):
return <value> or

3. a list of values (matching the output types):
return [<value1>,<value2>,...] or

4. a dictionary of values (matching the output names and types):
return {'name1':<value1>,'name2':<value2>}.

08.02.2 An example server node

Let’s implement our new service word_count, created in Lecture 08.01.
We need a server node to do so. Create (touch) a Python node file my_
services/src/service_server.py, change its permissions to user-
executable (chmod u+x), and edit it to have the same contents as the
rico_services/src/service_server.py file shown in Figure 08.1.

08.02.3 Creating a client node

The key elements to creating a client node are:client node

1. Import the service:
from <pkg>.srv import <srv_type>.

108 06 June 2020, 18:32:55 08.02 3 1

Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

1 #!/usr/bin/env python
2 import rospy
3 from rico_services.srv import WordCount, WordCountResponse
4

5 def count_words(request):
6 return len(request.words.split()) # num of words
7

8 rospy.init_node('service_server')
9

10 service = rospy.Service(# register service
11 'word_count', # service name
12 WordCount, # service type
13 count_words # function service provides
14)
15

16 rospy.spin()

Figure 08.1: rico_services/src/service_server.py listing.

2. Wait for a service:
rospy.wait_for_service('service_name').

3. Set up a proxy server for communication:
rospy.ServiceProxy(<srv_name>,<srv_type>).

4. Use the service: fun(...).

08.02.4 An example client node

Let’s create a client for our new service word_count. We need
a client node to do so. Create (touch) a Python node file
my_services/src/service_client.py, change its permis-
sions to user-executable (chmod u+x), and edit it to have the same
contents as the rico_services/src/service_client.py file shown
in Figure 08.2.

The only thing that may surprise us here is the line
words = ' '.join(sys.argv[1:]). The inner statement
sys.argv[1:] returns a list of command-line arguments supplied to
the node. Then ' '.join(...) concatenates the (string) elements of
the list with a space character between each pair. This is one of many ways
we could parse command-line arguments. argument parsing

109 06 June 2020, 18:32:55 08.02 3 2

Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

1 #!/usr/bin/env python
2 import rospy
3 from rico_services.srv import WordCount
4 import sys
5

6 rospy.init_node('service_client')
7

8 rospy.wait_for_service('word_count') # wait for registration
9 word_counter = rospy.ServiceProxy(# set up proxy

10 'word_count', # service name
11 WordCount # service type
12)
13 words = ' '.join(sys.argv[1:]) # parse args
14 word_count = word_counter(words) # use service
15

16 print(words+'--> has '+str(word_count.count)+' words')

Figure 08.2: rico_services/src/service_client.py listing.

08.02.5 Running and verifying the server and client nodes

Navigate to your workspace root and build the workspace.

catkin_make

Run a roscore. In a new Terminal, in your workspace root,
source devel/setup.bash, then run the server node.

rosrun my_services service_server.py

In a new Terminal, in your workspace root, source devel/setup.bash,
then run the client node with command line arguments passed.

rosrun my_services service_client.py hello world sweet world

hello world sweet world--> has 4 words

It works!

110 06 June 2020, 18:32:55 08.02 3 3

