
Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

Lecture 09.01 Introducing ROS actions

A ROS action is effectively a function one node (the action server) asyn-actions
action server

asynchronicity
chronously provides to other nodes (the clients). Note this is just like service,

clients
but with the asynchronicity of a topic. Like a service, an action has a goal

goals
and a result; but unlike a service, an action also provides feedback during ex-

results
feedback

ecution. This makes actions more suitable for goal-oriented tasks that take
time, such as:

1. navigating to a location,
2. performing a complex manipulation, or
3. performing a long calculation.

09.01.1 An example action type definition

In this section, we develop a custom action type definition Timer in
action/Timer.action for an action that has as

input a duration to wait time_to_wait;
output a total actual duration waited time_elapsed and a total

uint32 number of feedback updates sent updates_sent; and
feedback a duration waited so far time_elapsed and a duration left

to wait time_remaining.

Box 09.1 why a timer though

The Timer action is for demonstration purposes only and shouldn’t
be used to implement timing in a ROS graph. For timing, use
rospy.sleep().

We create a new package for this chapter, my_actions, which shad-
ows the package included with the book, rico_actions. So, in your
workspace’s src directory, use catkin_create_pkg to create a package,
as follows.

catkin_create_pkg my_actions roscpp rospy actionlib_msgs

The first thing when creating a custom action definition is to create the
action definition file.action definition

file

112 06 June 2020, 18:32:55 09.01 3 1

Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

09.01.1.1 Creating an action definition

From your package root, create it with the following.

mkdir action
touch action/Timer.action

Now we can edit the contents of Timer.action to include the follow-
ing.

inputs
duration time_to_wait

outputs
duration time_elapsed
uint32 updates_sent

feedback
duration time_elapsed
duration time_remaining

Above the first delimiter “---” are input field types and names; between the input field

delimiters are output field types and names; and after the second delimiter output field

are feedback field types and names. feedback field

We are now ready to update the build-system.

09.01.1.2 Updating the build-system configuration

The package we’re creating in this chapter, my_actions, was cre-
ated with a bit of forethought: we included as dependencies in our
catkin_create_pkg call the package actionlib_msgs for creating
actions. If we hadn’t had such foresight, we would have to make several
changes in our package’s package.xml and CMakeLists.txt files
before proceeding to create our own message description. As it stands, we
still need to make a few changes to them.

How we would have had to change package.txt
Including actionlib_msgs in our catkin_create_pkg call yielded

the following lines in our package.xml, which would otherwise need to
be added manually.

<build_depend>actionlib_msgs</build_depend>
<build_exec_depend>actionlib_msgs</build_exec_depend>
<exec_depend>actionlib_msgs</exec_depend>

113 06 June 2020, 18:32:55 09.01 3 2

Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

How we need to change CMakeLists.txt
Including actionlib_msgs in our catkin_create_pkg call yielded

the following lines in our CMakeLists.txt, which would otherwise need
to be added manually. As an additional line in the find_package(...)
block, we would need the following.

actionlib_msgs

The rest of the changes we do need to make manually. The
add_action_files(...) block needs uncommented and edited to
appear as follows.

add_action_files(
DIRECTORY action
FILES Timer.action

)

We have already created the Timer.action file.
The generate_messages(...) block needs to be uncommented and

actionlib_msgs added such that it appears as follows.

generate_messages(
DEPENDENCIES
actionlib_msgs
std_msgs

)

Finally, the catkin_package block also needs uncommented and
actionlib_msgs added such that it appears as follows.

catkin_package(
CATKIN_DEPENDS
actionlib_msgs

)

Now our package is set up to use the action type Timer—or, it will
be once we catkin_make our workspace. (Go ahead and do so now.)
As before with services, catkin_make will take our action definition and
create several message definition .msg files. This highlights the fact that an
action communicates via services.

We have successfully created an action type! In Lecture 09.02, we’ll
learn to serve and call this action type.

114 06 June 2020, 18:32:55 09.01 3 3

