Control Systems I MME 561/ME 461

a syllabus

Course description

The feedback control of linear systems using so-called “classical” control theory techniques. Root locus and frequency-response methods are introduced for controlling single-input, single-output (SISO) systems. Stability is evaluated in terms of both root locus and frequency response. PID and lag-lead controllers are discussed extensively. MATLAB-based or Python-based controller design is used throughout the course. Controller hardware instantiation is also introduced. (Adapted from the course catalog.)

General information

Office Hours (CH 103C)
MF 1–2
Office Hours (Zoom, password sent separately)
W 1:30–4:30
Office location
CH 103C
Location
The Internets
Times
MW 5:00–7:20 pm
Website
ricopic.one/courses/me461_2020Su
Moodle
moodle.stmartin.edu

secrets

Special Corona Edition

Most of the lectures will be recorded, listed below in the schedule, so they may be watched asynchronously. However, Wednesdays at class time, 5, I’ll be on Zoom. I’ll be on for as long as there are folks to hang out with!

Textbooks

(Ni) Norman S. Nise. Control Systems Engineering. Seventh Edition. Wiley, 2015. (Required. Old editions ok, but homework from Seventh.)

Slack

Everyone is required to join the messaging service called “Slack.” We’ll use it to communicate with each other during the semester. The Slack team you need to join is called drrico. That’s a signup link. Be sure to join the channels #461-general-2020 and #461-homework-2020 and, if you’re a grad student, the #561-grad-students channel.

Homebrew texts and notes

Partial texts (with fill-ins) I’m writing will be posted on the Control: an introduction page.

These texts are being occasionally revised, so you have two printing options I recommend (both in color!):

  1. Have a service such as that of the SMU Computer Resource Center print them in bulk for you. Whichever printing service you use, I recommend binding them such that pages can be replaced (e.g. three-ring bindable) in case there are major revisions to a section during the term.
  2. Print each week’s lectures on-demand, yourself, when I give the “ok to print” signal. This is more tedious and requires more organization, but it’s at least a bit less paper.

Throughout the semester, you should be ready to show these (current) in any class session, with threat of 10% quiz grade deductions.

Video pre-class lectures

Before/for every class, there will be one or more video lectures you will be required to watch! See the Schedule. I’ve uploaded them to YouTube. Watch them with the texts printed out, filling in the blank sections as you go.

I recommend subscribing and familiarizing yourself with the playlist for this course.

Schedule

The following schedule is tentative and will be updated as the course proceeds.

day lecture videos week reading due
00 Course introduction,
01.00 Introduction,
01.01 Performance,
01.02 Feedback control system block diagrams
1 Ni Chs 1, 6 Ass. 1
02.01 Introduction to stability performance,
02.02 Stability from the transfer function,
02.03 Routh-Hurwitz stability criterion
03.00 Transient response performance,
03.01 Transient response characteristics,
03.02 Exact analytical transient response characteristics,
03.03 Approximate analytical transient response
2 Ni 4.7, 4.8, Ch 7 Ass. 2
03.04 Simulation of transient performance,
04.00 Steady-state response performance,
04.01 Steady-state error for unity feedback systems
05.00 Root locus analysis introduction,
05.01 Root locus definition,
A.01 Complex functions
3 Ni Ch 8 Ass. 3
05.02 Sketching the root locus,
05.03 Generating the root locus via a computer
06.00 Root locus design introduction,
06.01 Gain from the root locus,
06.02 Proportional controller design P,
06.03 Beyond proportional design
4 Ni Ch 9 Ass. 4
06.04 PI controller design,
06.05 Proportional-lag controller design,
06.06 PD controller design
06.07.1 Proportional-lead controller design,
06.07.2 Proportional-lead controller design example,
06.08 PID controller design,
06.08 PID controller design example,
06.09 Proportional-lead-lag controller design
5 Ni Ch 9, 10 Ass. 5+6
07.03.1 Nyquist criterion 1 of 3,
07.03.2 Nyquist criterion 2 of 3 sketching plots,
07.03.3 Nyquist criterion 3 of 3 sketch example,
07.04 Stability from the Nyquist plot
07.05 Stability, gain margin, and phase margin from Bode plots,
07.06 Relations between time- and frequency domains,
08.01 Frequency response design
6 Ni Ch 11, 12 Ass. 7
09.01.1 State-space control 1 of 3,
09.01.2 State-space control 2 of 3,
09.01.3 State-space control 3 of 3 example,
B.2.1 Phase-variable canonical form

Assignments

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

Assignment 6

Assignment 7

Graduate student project

Graduate students will work as a single team on the following project. Write a “design region” Python class in the python-control project that

I have a fork here with branch design_region to which you’ll contribute this class. The design_region class should have attributes for all the transient response characteristics discussed in Control (e.g. rise time), second-order characteristics (damping ratio and natural frequency), and corresponding complex plane coordinates (real and imaginary and polar magnitude and phase). It should have set methods that can detect contradictory attributes and compute all attributes implied by that which has been set. It should also have flags for inequalities (e.g. the settling time requirement might be a maximum) and be able to compute and plot corresponding design regions implied by these. Design regions can be points, lines, or areas in the complex plane. The final report is just the corresponding documentation, which should include usage and examples.

Homework, quiz, & exam policies

Homework & homework quiz policies

Weekly homework will be “due” on Fridays, but it will not be turned in for credit. However — and this is very important — each week a quiz will be given on Friday that will cover that week’s homework.

Quizzes will be available on moodle each Friday (as early as I can get them up), and must be completed by that evening (before midnight). Late quizzes will receive no credit.

Working in groups on homework is strongly encouraged, but quizzes must be completed individually.

Exam policies

Exams typically will be in-class. If you require any specific accommodations, please contact me.

Calculators will be allowed. Only ones own notes and the notes provided by the instructor will be allowed. No communication-devices will be allowed.

No exam may be taken early. Makeup exams require a doctor’s note excusing the absence during the exam.

The final exam will be cumulative.

Grading policies

Total grades in the course may be curved, but individual homework quizzes and exams will not be. They will be available on moodle throughout the semester.

Participation and Homework Quizzes
30%
Final Exam
70%

secrets

Participation grades depend on (a) watching the video lectures before class, (b) filling in your notes, and (c) engagement in class discussions.

Academic integrity policy

Cheating or plagiarism of any kind is not tolerated and will result in a failing grade (“F”) in the course. I take this very seriously. Engineering is an academic and professional discipline that requires integrity. I expect students to consider their integrity of conduct to be their highest consideration with regard to the course material.

Cheating is academic dishonesty as well as unprofessional for prospective teachers. Do not copy other students' assignments, have someone else write your papers or plagiarize published or unpublished materials, or submit work previously graded by other instructors. See Saint Martin's University Student Handbook. Students will be graded not only on their academic success, but on professional conduct as well. Students who fail to show professionalism in their academic or personal conduct (e.g. constant tardiness, excessive absences, and/or other unprofessional behavior) may earn a lower letter grade than the total of semester accumulated points, or may even earn a failing grade.

Access and accommodations

Your experience in this class is important to me. If you have already established accommodations with Disability Support Services for Students (DSS), please communicate your approved accommodations to me at your earliest convenience so we can discuss your needs in this course.

If you have not yet established services through DSS, but have a temporary health condition or permanent disability that requires accommodations (conditions include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DSS at 360-438-4580 or dss.testing@stmartin.edu or smu.dss@stmartin.edu DSS offers resources and coordinates reasonable accommodations for students with disabilities and/or temporary health conditions. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DSS. It is the policy and practice of the Saint Martin’s University to create inclusive and accessible learning environments consistent with federal and state law.

Sexual misconduct/sexual harassment reporting

Saint Martin’s University is committed to providing an environment free from sex discrimination, including sexual harassment and sexual violence. There are Title IX/sexual harassment posters around campus that include the contact information for confidential reporting and formal reporting. Confidential reporting is where you can talk about incidents of sexual harassment and gender-based crimes including sexual assault, stalking, and domestic/relationship violence. This confidential resource can help you without having to report your situation to the formal reporting process through unless you request that they make a report. Additional information and or reports can be made to the Title IX Team here on campus through the Dean of Students – Ms. Melanie Richardson, Associate VP of Human Resources – Ms. Cynthia Johnson, Public Safety – Mr. Will Stakelin, or the Provost/Vice President of Academic Affairs, Dr. Kate Boyle. Please be aware that in compliance with Title IX and under the Saint Martin’s University policies, educators must report incidents of sexual harassment and gender-based crimes including sexual assault, stalking, and domestic/relationship violence. If you disclose any of these situations in class, on papers, or to me personally, I am required to report it.

University sanctioned activities

If a student is absent from class due to university sanctioned activities, such as sports, it is the student's responsibility to request that the absence be excused, otherwise, the absence will be recorded as unexcused. Absent students are responsible for catching up with the class, and if any assignments are due on the day of the absence, it is the student's responsibility to turn in the assignments on time (prior to class). Assignments may be submitted as an attachment to email: fumie@stmartin.edu. Please request the policy handout, “Requirement for receiving Excused Absence” on the first day of the class if you think this policy might apply to you.

Center for Learning, Writing, and Advising

The Center for Student Learning, Writing and Advising is an integrated learning assistance program that offers services for students at all levels of achievement in pursuit of intellectual growth and academic excellence! The Center offers peer tutoring, study support, first year/early major advising, and writing support. Please investigate ways in which to support your learning.

COVID-19 Policies

  1. Students and faculty perform self-check for COVID-19 symptoms before coming to class Students and faculty should perform a self-check each day before coming to campus, and stay away from campus if they are ill. Students who are ill should inform faculty. Faculty who are ill should arrange for a communication plan with students if they need to miss class. Faculty are encouraged to give a gentle reminder at the beginning of each face-to-face class that students experiencing symptoms listed on the checklist should elect to remove themselves from campus. Anyone diagnosed with COVID-19, or living with/caring for someone diagnosed with COVID-19, should notify the Office of Public Safety.
  2. Support for students who are unable to attend classes for any reason due to COVID-19 (including illness, travel restrictions, and quarantine): Faculty should attempt to make reasonable accommodations for students who are unable to attend classes or complete coursework due to the pandemic. Students adversely impacted by COVID-19 should notify their faculty and academic advisor to arrange for accommodations as soon as they become aware that they will be needed. Another alternative is to use the Saints Care form on the SMU website.
  3. Attendance: This attendance policy consists of two elements. One relates to support of contact tracing efforts throughout this period of COVID-19 potential threats. The second relates to the use of attendance as a course grading element.
    1. For tracking purposes, if needed, in all face-to-face courses faculty should maintain a record of attendance throughout the semester. The attendance needs to be taken by voice call or faculty recognition of students attending each individual session. Records should be kept via the Self-Service attendance feature or some other record the instructor maintains and can produce on demand should an inquiry be necessary for tracing purposes. Attendance should not be taken by passing around an attendance sheet or having students sign in as they enter the classroom as this handling could compromise attendees.
    2. In an effort to support students who are considered high-risk or vulnerable as defined by public health officials and/or are unable to attend due to concerns about illness, campus safety, or need to care for familial obligations, attendance should not be used as a grade element during the Fall or any subsequent semesters affected by continuing COVID-19 requirements.
  4. Face Covering: The university will follow Washington state policies regarding face mask exemptions and requirements: https://coronavirus.wa.gov/information-for/you-and-your-family/face-masks-or-cloth-face-covering Employees, students, and visitors must wear fabric or disposable surgical-style masks that cover their nose and mouth when they are inside university buildings, and when they are outdoors in situations where social distancing of at least six feet is not possible. In some cases, plastic that shields nose and mouth can be substituted for a fabric mask. Face masks must be worn at all times when inside any campus building, except when alone in an enclosed room, such as an office or enclosed study room, or while participating in activities in which a face mask or shield cannot practically be worn, such as when eating and drinking or playing a musical instrument or singing, as part of work. Community members should make every effort to eat and drink only when appropriately distanced from others, or in designated areas. A limited number of classrooms that contain plexiglass barriers in the podium area will allow the instructor to remove their mask, as long as they remain behind the plexiglass barrier. Students must wear masks in classrooms at all times. Prior to stepping beyond the barrier the instructor must re-mask. It is the responsibility of all of the campus community to address students and others on campus who are not following the mandate for face masks. Any student, instructor or visitor who is not wearing a mask will be directed to: (1) the Office of Public Safety or another designated location for a disposable mask; or (2) Public Safety, Disability and Support Services (DSS), or Human Resources to clarify the guidelines and need for compliance. All exemptions must be cleared in advance, similar to other classroom accommodations, with Disability and Support Services Office, or the Human Resources Office. Designated locations for masks: • Public Safety (2nd Floor Old Main) • JBLM: Night Monitor in Stone Education Center Kiosk • Looking into additional locations (perhaps library and rec center)
  5. Social Distancing in the Classroom: Faculty, students, and guests must maintain minimum physical distancing whenever possible of six feet between all on-campus personnel, including with visitors, and where physical distancing cannot be maintained, implement administrative or engineering controls to minimize exposure.
  6. Classroom arrangement: Desks and tables will be placed in a fixed manner to allow for a minimum of six feet between students seated in their desks, and from the faculty leading the class. Desks may not be re-arranged or shifted. When directing students into smaller discussion or work groups, faculty need to ensure that students maintain the six-foot physical distancing standard. Students also need to continue to use PPE (cloth facial coverings or face shields) during these activities. Recognizing that use of small group activities while enforcing physical distancing may have an impact on classroom volume, faculty are encouraged to take this into consideration when planning classroom activities.
  7. Passing out/collecting paper materials: Faculty should avoid distributing and collecting “handouts” or printed materials by hand. Ideally, the materials are uploaded to the class Moodle site before class. Some classes may need to have students bring digital devices to class. Exceptions will be made for tests that cannot be delivered electronically. When tests are hand-administered and hand-collected, faculty and students should take precautions to reduce the risk of transmission. For example, faculty may wish to use disposable gloves while handing out and collecting tests. Students should not pass tests to other students. Students and faculty may wish to use hand sanitizer before and after handling tests.
  8. Cleaning: Classrooms and laboratories will be cleaned and disinfected regularly and thoroughly by custodial staff. However, because many people will be using these spaces throughout the day, students and faculty should protect themselves by disinfecting the area and objects they will come into contact with. Students and faculty should also be considerate of others and clean up and disinfect their work area as much as possible before they leave the room. a. Upon entry into the classroom, faculty and students should disinfect surfaces in their immediate area where they will be sitting: chair, stool, desk, table, computer workstation, etc., using the appropriate cleaning products available in the classroom as follows: i. Copy machine/computer screen/smartboards: screen cleaning solution ii. Other surfaces, including keyboard/mouse: disposable wipes (e.g., Clorox wipes); iii. Used wipes should go in the garbage receptacles provided in the classroom b. Special instructions for laboratories: department-specific laboratory cleaning and disinfecting protocols must be followed. In addition, students and faculty should disinfect their work area upon arrival, as indicated above c. Before leaving the classroom, faculty should disinfect the whiteboard, computer/electronic equipment, and other surfaces they have touched (faculty will be provided with their own whiteboard markers and erasers material) d. Sanitizing stations will be available at building entrances and exits, as well as other designated areas. Students and faculty are encouraged to wash hands frequently and/or carry their own hand sanitizer. Note: each classroom will have a cleaning/disinfecting kit with appropriate solutions and applicators (spray bottle, sanitizing wipes, towels, hand sanitizer). Faculty and students are encouraged to also bring their own hand sanitizer and sanitizing wipes.
  9. Food and beverages: Because consuming food and beverages require removal of the mask, no food or beverages can be consumed in the class. If students or faculty must drink water or eat during class, they should step outside the classroom. Faculty may wish to consider giving refreshment breaks during courses that meet longer than 50 minutes.
  10. Storage of personal items (jackets, bags, umbrellas, etc.): Items such as backpacks, bags, umbrellas, and articles of clothing, should be kept in areas close to their owner. Shared lockers or common storage areas should not be used since these areas could lessen social distancing. Spaces under student chairs or desks are the best places to store these types of items.
  11. Emergency drills and events (fire, active shooter, etc.): Continue training opportunities and exercises. The COVID-19 environment provides trainers a real-time opportunity for training students, faculty, and staff.
  12. Compliance: Compliance with these policies is covered by regulations stipulated in the university contract signed by students. Students who violate these regulations repeatedly or egregiously may be referred to the Dean of Students.

Correlation of course & program outcomes

In keeping with the standards of the Department of Mechanical Engineering, each course is evaluated in terms of its desired outcomes and how these support the desired program outcomes. The following sections document the evaluation of this course.

Desired course outcomes

Upon completion of the course, the following course outcomes are desired:

  1. Students will understand the fundamentals of classical control theory.
  2. Students will be able to construct, understand, and use a root locus plot for controller design.
  3. Students will be able to construct, understand, and use Bode and Nyquist plots for controller design.
  4. Students will understand controller stability.
  5. Students will understand and be able to design PID-based and gain-lag-lead-based controller design.

Desired program outcomes

In accordance with ABET’s student outcomes, our desired program outcomes are that mechanical engineering graduates have:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Correlation of outcomes

The following table correlates the desired course outcomes with the desired program outcomes they support.

desired program outcomes
1 2 3 4 5 6 7
desired course outcomes 1